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Classification

Introduction Multispectral classification is the process of sorting pixels into a finite 
number of individual classes, or categories of data, based on their 
data file values. If a pixel satisfies a certain set of criteria, the pixel 
is assigned to the class that corresponds to that criteria. This process 
is also referred to as image segmentation.

Depending on the type of information you want to extract from the 
original data, classes may be associated with known features on the 
ground or may simply represent areas that look different to the 
computer. An example of a classified image is a land cover map, 
showing vegetation, bare land, pasture, urban, etc. 

The Classification 
Process 

Pattern Recognition Pattern recognition is the science—and art—of finding meaningful 
patterns in data, which can be extracted through classification. By 
spatially and spectrally enhancing an image, pattern recognition can 
be performed with the human eye; the human brain automatically 
sorts certain textures and colors into categories. 

In a computer system, spectral pattern recognition can be more 
scientific. Statistics are derived from the spectral characteristics of 
all pixels in an image. Then, the pixels are sorted based on 
mathematical criteria. The classification process breaks down into 
two parts: training and classifying (using a decision rule). 

Training First, the computer system must be trained to recognize patterns in 
the data. Training is the process of defining the criteria by which 
these patterns are recognized (Hord, 1982). Training can be 
performed with either a supervised or an unsupervised method, as 
explained below. 

Supervised Training

Supervised training is closely controlled by the analyst. In this 
process, you select pixels that represent patterns or land cover 
features that you recognize, or that you can identify with help from 
other sources, such as aerial photos, ground truth data, or maps. 
Knowledge of the data, and of the classes desired, is required before 
classification. 

By identifying patterns, you can instruct the computer system to 
identify pixels with similar characteristics. If the classification is 
accurate, the resulting classes represent the categories within the 
data that you originally identified. 
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Unsupervised Training

Unsupervised training is more computer-automated. It enables you 
to specify some parameters that the computer uses to uncover 
statistical patterns that are inherent in the data. These patterns do 
not necessarily correspond to directly meaningful characteristics of 
the scene, such as contiguous, easily recognized areas of a particular 
soil type or land use. They are simply clusters of pixels with similar 
spectral characteristics. In some cases, it may be more important to 
identify groups of pixels with similar spectral characteristics than it 
is to sort pixels into recognizable categories. 

Unsupervised training is dependent upon the data itself for the 
definition of classes. This method is usually used when less is known 
about the data before classification. It is then the analyst’s 
responsibility, after classification, to attach meaning to the resulting 
classes (Jensen, 1996). Unsupervised classification is useful only if 
the classes can be appropriately interpreted. 

Signatures The result of training is a set of signatures that defines a training 
sample or cluster. Each signature corresponds to a class, and is used 
with a decision rule (explained below) to assign the pixels in the 
image file to a class. Signatures in ERDAS IMAGINE can be 
parametric or nonparametric.

A parametric signature is based on statistical parameters (e.g., 
mean and covariance matrix) of the pixels that are in the training 
sample or cluster. Supervised and unsupervised training can 
generate parametric signatures. A set of parametric signatures can 
be used to train a statistically-based classifier (e.g., maximum 
likelihood) to define the classes.

A nonparametric signature is not based on statistics, but on discrete 
objects (polygons or rectangles) in a feature space image. These 
feature space objects are used to define the boundaries for the 
classes. A nonparametric classifier uses a set of nonparametric 
signatures to assign pixels to a class based on their location either 
inside or outside the area in the feature space image. Supervised 
training is used to generate nonparametric signatures (Kloer, 1994). 

ERDAS IMAGINE enables you to generate statistics for a 
nonparametric signature. This function allows a feature space object 
to be used to create a parametric signature from the image being 
classified. However, since a parametric classifier requires a normal 
distribution of data, the only feature space object for which this 
would be mathematically valid would be an ellipse (Kloer, 1994). 

When both parametric and nonparametric signatures are used to 
classify an image, you are more able to analyze and visualize the 
class definitions than either type of signature provides independently 
(Kloer, 1994).

See “Math Topics” for information on feature space images and 
how they are created.
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Decision Rule After the signatures are defined, the pixels of the image are sorted 
into classes based on the signatures by use of a classification 
decision rule. The decision rule is a mathematical algorithm that, 
using data contained in the signature, performs the actual sorting of 
pixels into distinct class values. 

Parametric Decision Rule

A parametric decision rule is trained by the parametric signatures. 
These signatures are defined by the mean vector and covariance 
matrix for the data file values of the pixels in the signatures. When 
a parametric decision rule is used, every pixel is assigned to a class 
since the parametric decision space is continuous (Kloer, 1994).

Nonparametric Decision Rule

A nonparametric decision rule is not based on statistics; therefore, it 
is independent of the properties of the data. If a pixel is located 
within the boundary of a nonparametric signature, then this decision 
rule assigns the pixel to the signature’s class. Basically, a 
nonparametric decision rule determines whether or not the pixel is 
located inside of nonparametric signature boundary.

Output File When classifying an image file, the output file is an image file with a 
thematic raster layer. This file automatically contains the following 
data:

• class values

• class names

• color table

• statistics 

• histogram 

The image file also contains any signature attributes that were 
selected in the ERDAS IMAGINE Supervised Classification utility.

The class names, values, and colors can be set with the 
Signature Editor or the Raster Attribute Editor.
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Classification Tips 

Classification Scheme Usually, classification is performed with a set of target classes in 
mind. Such a set is called a classification scheme (or classification 
system). The purpose of such a scheme is to provide a framework 
for organizing and categorizing the information that can be extracted 
from the data (Jensen et al, 1983). The proper classification scheme 
includes classes that are both important to the study and discernible 
from the data on hand. Most schemes have a hierarchical structure, 
which can describe a study area in several levels of detail. 

A number of classification schemes have been developed by 
specialists who have inventoried a geographic region. Some 
references for professionally-developed schemes are listed below:

• Anderson, J.R., et al. 1976. “A Land Use and Land Cover 
Classification System for Use with Remote Sensor Data.” U.S. 
Geological Survey Professional Paper 964. 

• Cowardin, Lewis M., et al. 1979. Classification of Wetlands and 
Deepwater Habitats of the United States. Washington, D.C.: U.S. 
Fish and Wildlife Service.

• Florida Topographic Bureau, Thematic Mapping Section. 1985. 
Florida Land Use, Cover and Forms Classification System. Florida 
Department of Transportation, Procedure No. 550-010-001-a. 

• Michigan Land Use Classification and Reference Committee. 
1975. Michigan Land Cover/Use Classification System. Lansing, 
Michigan: State of Michigan Office of Land Use. 

Other states or government agencies may also have specialized land 
use/cover studies. 

It is recommended that the classification process is begun by 
defining a classification scheme for the application, using previously 
developed schemes, like those above, as a general framework. 

Iterative Classification A process is iterative when it repeats an action. The objective of the 
ERDAS IMAGINE system is to enable you to iteratively create and 
refine signatures and classified image files to arrive at a desired final 
classification. The ERDAS IMAGINE classification utilities are tools to 
be used as needed, not a numbered list of steps that must always be 
followed in order.

The total classification can be achieved with either the supervised or 
unsupervised methods, or a combination of both. Some examples 
are below:

• Signatures created from both supervised and unsupervised 
training can be merged and appended together. 
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• Signature evaluation tools can be used to indicate which 
signatures are spectrally similar. This helps to determine which 
signatures should be merged or deleted. These tools also help 
define optimum band combinations for classification. Using the 
optimum band combination may reduce the time required to run 
a classification process.

• Since classifications (supervised or unsupervised) can be based 
on a particular area of interest (either defined in a raster layer or 
an .aoi layer), signatures and classifications can be generated 
from previous classification results.

Supervised vs. 
Unsupervised Training

In supervised training, it is important to have a set of desired classes 
in mind, and then create the appropriate signatures from the data. 
You must also have some way of recognizing pixels that represent 
the classes that you want to extract. 

Supervised classification is usually appropriate when you want to 
identify relatively few classes, when you have selected training sites 
that can be verified with ground truth data, or when you can identify 
distinct, homogeneous regions that represent each class. 

On the other hand, if you want the classes to be determined by 
spectral distinctions that are inherent in the data so that you can 
define the classes later, then the application is better suited to 
unsupervised training. Unsupervised training enables you to define 
many classes easily, and identify classes that are not in contiguous, 
easily recognized regions. 

NOTE: Supervised classification also includes using a set of classes 
that is generated from an unsupervised classification. Using a 
combination of supervised and unsupervised classification may yield 
optimum results, especially with large data sets (e.g., multiple 
Landsat scenes). For example, unsupervised classification may be 
useful for generating a basic set of classes, then supervised 
classification can be used for further definition of the classes.

Classifying Enhanced 
Data

For many specialized applications, classifying data that have been 
merged, spectrally merged or enhanced—with principal components, 
image algebra, or other transformations—can produce very specific 
and meaningful results. However, without understanding the data 
and the enhancements used, it is recommended that only the 
original, remotely-sensed data be classified. 

Dimensionality Dimensionality refers to the number of layers being classified. For 
example, a data file with 3 layers is said to be 3-dimensional, since 
3-dimensional feature space is plotted to analyze the data. 

Feature space and dimensionality are discussed in “Math 
Topics”. 
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Adding Dimensions

Using programs in ERDAS IMAGINE, you can add layers to existing 
image files. Therefore, you can incorporate data (called ancillary 
data) other than remotely-sensed data into the classification. Using 
ancillary data enables you to incorporate variables into the 
classification from, for example, vector layers, previously classified 
data, or elevation data. The data file values of the ancillary data 
become an additional feature of each pixel, thus influencing the 
classification (Jensen, 1996). 

Limiting Dimensions

Although ERDAS IMAGINE allows an unlimited number of layers of 
data to be used for one classification, it is usually wise to reduce the 
dimensionality of the data as much as possible. Often, certain layers 
of data are redundant or extraneous to the task at hand. 
Unnecessary data take up valuable disk space, and cause the 
computer system to perform more arduous calculations, which slows 
down processing. 

Use the Signature Editor to evaluate separability to calculate the 
best subset of layer combinations. Use the Image Interpreter 
functions to merge or subset layers. Use the Image Information 
tool (on the Viewer’s tool bar) to delete a layer(s).

Supervised 
Training 

Supervised training requires a priori (already known) information 
about the data, such as:

• What type of classes need to be extracted? Soil type? Land use? 
Vegetation? 

• What classes are most likely to be present in the data? That is, 
which types of land cover, soil, or vegetation (or whatever) are 
represented by the data? 

In supervised training, you rely on your own pattern recognition 
skills and a priori knowledge of the data to help the system 
determine the statistical criteria (signatures) for data classification. 

To select reliable samples, you should know some information—
either spatial or spectral—about the pixels that you want to classify. 
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The location of a specific characteristic, such as a land cover type, 
may be known through ground truthing. Ground truthing refers to 
the acquisition of knowledge about the study area from field work, 
analysis of aerial photography, personal experience, etc. Ground 
truth data are considered to be the most accurate (true) data 
available about the area of study. They should be collected at the 
same time as the remotely sensed data, so that the data correspond 
as much as possible (Star and Estes, 1990). However, some ground 
data may not be very accurate due to a number of errors and 
inaccuracies. 

Training Samples and 
Feature Space Objects 

Training samples (also called samples) are sets of pixels that 
represent what is recognized as a discernible pattern, or potential 
class. The system calculates statistics from the sample pixels to 
create a parametric signature for the class. 

The following terms are sometimes used interchangeably in 
reference to training samples. For clarity, they are used in this 
documentation as follows:

• Training sample, or sample, is a set of pixels selected to 
represent a potential class. The data file values for these pixels 
are used to generate a parametric signature.

• Training field, or training site, is the geographical AOI in the 
image represented by the pixels in a sample. Usually, it is 
previously identified with the use of ground truth data. 

Feature space objects are user-defined AOIs in a feature space 
image. The feature space signature is based on these objects.

Selecting Training 
Samples

It is important that training samples be representative of the class 
that you are trying to identify. This does not necessarily mean that 
they must contain a large number of pixels or be dispersed across a 
wide region of the data. The selection of training samples depends 
largely upon your knowledge of the data, of the study area, and of 
the classes that you want to extract. 

ERDAS IMAGINE enables you to identify training samples using one 
or more of the following methods: 

• using a vector layer

• defining a polygon in the image

• identifying a training sample of contiguous pixels with similar 
spectral characteristics

• identifying a training sample of contiguous pixels within a certain 
area, with or without similar spectral characteristics

• using a class from a thematic raster layer from an image file of 
the same area (i.e., the result of an unsupervised classification)
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Digitized Polygon

Training samples can be identified by their geographical location 
(training sites, using maps, ground truth data). The locations of the 
training sites can be digitized from maps with the ERDAS IMAGINE 
Vector or AOI tools. Polygons representing these areas are then 
stored as vector layers. The vector layers can then be used as input 
to the AOI tools and used as training samples to create signatures.

Use the Vector and AOI tools to digitize training samples from a 
map. Use the Signature Editor to create signatures from training 
samples that are identified with digitized polygons.

User-defined Polygon

Using your pattern recognition skills (with or without supplemental 
ground truth information), you can identify samples by examining a 
displayed image of the data and drawing a polygon around the 
training site(s) of interest. For example, if it is known that oak trees 
reflect certain frequencies of green and infrared light according to 
ground truth data, you may be able to base your sample selections 
on the data (taking atmospheric conditions, sun angle, time, date, 
and other variations into account). The area within the polygon(s) 
would be used to create a signature.

Use the AOI tools to define the polygon(s) to be used as the 
training sample. Use the Signature Editor to create signatures 
from training samples that are identified with the polygons.

Identify Seed Pixel

With the Seed Properties dialog and AOI tools, the cursor (crosshair) 
can be used to identify a single pixel (seed pixel) that is 
representative of the training sample. This seed pixel is used as a 
model pixel, against which the pixels that are contiguous to it are 
compared based on parameters specified by you. 

When one or more of the contiguous pixels is accepted, the mean of 
the sample is calculated from the accepted pixels. Then, the pixels 
contiguous to the sample are compared in the same way. This 
process repeats until no pixels that are contiguous to the sample 
satisfy the spectral parameters. In effect, the sample grows outward 
from the model pixel with each iteration. These homogenous pixels 
are converted from individual raster pixels to a polygon and used as 
an AOI layer. 

Select the Seed Properties option in the Viewer to identify 
training samples with a seed pixel.
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Seed Pixel Method with Spatial Limits

The training sample identified with the seed pixel method can be 
limited to a particular region by defining the geographic distance and 
area. 

Vector layers (polygons or lines) can be displayed as the top 
layer in the Viewer, and the
boundaries can then be used as an AOI for training samples 
defined under Seed Properties.

Thematic Raster Layer

A training sample can be defined by using class values from a 
thematic raster layer (see Table 38). The data file values in the 
training sample are used to create a signature. The training sample 
can be defined by as many class values as desired. 

NOTE: The thematic raster layer must have the same coordinate 
system as the image file being classified. 

Evaluating Training 
Samples 

Selecting training samples is often an iterative process. To generate 
signatures that accurately represent the classes to be identified, you 
may have to repeatedly select training samples, evaluate the 
signatures that are generated from the samples, and then either 
take new samples or manipulate the signatures as necessary. 
Signature manipulation may involve merging, deleting, or appending 
from one file to another. It is also possible to perform a classification 
using the known signatures, then mask out areas that are not 
classified to use in gathering more signatures. 

Table 38: Training Sample Comparison

Method Advantages Disadvantages

Digitized Polygon precise map 
coordinates, represents 
known ground 
information

may overestimate class 
variance, time-
consuming

User-defined Polygon high degree of user 
control

may overestimate class 
variance, time-
consuming

Seed Pixel auto-assisted, less 
time

may underestimate 
class variance

Thematic Raster Layer allows iterative 
classifying

must have previously 
defined thematic layer
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See "Evaluating Signatures" for methods of determining the 
accuracy of the signatures created from your training samples. 

Selecting Feature 
Space Objects

The ERDAS IMAGINE Feature Space tools enable you to interactively 
define feature space objects (AOIs) in the feature space image(s). A 
feature space image is simply a graph of the data file values of one 
band of data against the values of another band (often called a 
scatterplot). In ERDAS IMAGINE, a feature space image has the 
same data structure as a raster image; therefore, feature space 
images can be used with other ERDAS IMAGINE utilities, including 
zoom, color level slicing, virtual roam, Spatial Modeler, and Map 
Composer.

Figure 93: Example of a Feature Space Image 

The transformation of a multilayer raster image into a feature space 
image is done by mapping the input pixel values to a position in the 
feature space image. This transformation defines only the pixel 
position in the feature space image. It does not define the pixel’s 
value. 

The pixel values in the feature space image can be the accumulated 
frequency, which is calculated when the feature space image is 
defined. The pixel values can also be provided by a thematic raster 
layer of the same geometry as the source multilayer image. Mapping 
a thematic layer into a feature space image can be useful for 
evaluating the validity of the parametric and nonparametric decision 
boundaries of a classification (Kloer, 1994).

When you display a feature space image file (.fsp.img) in a 
Viewer, the colors reflect the density of points for both bands. 
The bright tones represent a high density and the dark tones 
represent a low density.

b
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Create Nonparametric Signature

You can define a feature space object (AOI) in the feature space 
image and use it directly as a nonparametric signature. Since the 
Viewers for the feature space image and the image being classified 
are both linked to the ERDAS IMAGINE Signature Editor, it is possible 
to mask AOIs from the image being classified to the feature space 
image, and vice versa. You can also directly link a cursor in the 
image Viewer to the feature space Viewer. These functions help 
determine a location for the AOI in the feature space image.

A single feature space image, but multiple AOIs, can be used to 
define the signature. This signature is taken within the feature space 
image, not the image being classified. The pixels in the image that 
correspond to the data file values in the signature (i.e., feature space 
object) are assigned to that class. 

One fundamental difference between using the feature space image 
to define a training sample and the other traditional methods is that 
it is a nonparametric signature. The decisions made in the 
classification process have no dependency on the statistics of the 
pixels. This helps improve classification accuracies for specific 
nonnormal classes, such as urban and exposed rock (Faust et al, 
1991).

See “Math Topics” for information on feature space images.

Figure 94: Process for Defining a Feature Space Object

Display the image file to be classified in a Viewer 

Create feature space image from the image file being 

(layers 3, 2, 1).

(layer 1 vs. layer 2).

Draw an AOI (feature space object around the 
desired area in the feature space image.Once 
you have a desired AOI, it can be used as a 
signature.

A decision rule is used to analyze each pixel in 
the image file being classified, and the pixels 
with the corresponding data file values are 
assigned to the feature space class.
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Evaluate Feature Space Signatures

Using the Feature Space tools, it is also possible to use a feature 
space signature to generate a mask. Once it is defined as a mask, 
the pixels under the mask are identified in the image file and 
highlighted in the Viewer. The image displayed in the Viewer must 
be the image from which the feature space image was created. This 
process helps you to visually analyze the correlations between 
various spectral bands to determine which combination of bands 
brings out the desired features in the image. 

You can have as many feature space images with different band 
combinations as desired. Any polygon or rectangle in these feature 
space images can be used as a nonparametric signature. However, 
only one feature space image can be used per signature. The 
polygons in the feature space image can be easily modified and/or 
masked until the desired regions of the image have been identified. 

Use the Feature Space tools in the Signature Editor to create a 
feature space image and mask the signature. Use the AOI tools 
to draw polygons.

Unsupervised 
Training 

Unsupervised training requires only minimal initial input from you. 
However, you have the task of interpreting the classes that are 
created by the unsupervised training algorithm. 

Unsupervised training is also called clustering, because it is based on 
the natural groupings of pixels in image data when they are plotted 
in feature space. According to the specified parameters, these 
groups can later be merged, disregarded, otherwise manipulated, or 
used as the basis of a signature. 

Feature space is explained in “Math Topics”. 

Table 39: Feature Space Signatures

Advantages Disadvantages

Provide an accurate way to 
classify a class with a 
nonnormal distribution 
(e.g., residential and urban).

The classification decision process 
allows overlap and unclassified pixels.

Certain features may be more 
visually identifiable in a feature 
space image.

The feature space image may be 
difficult to interpret.

The classification decision 
process is fast.
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Clusters

Clusters are defined with a clustering algorithm, which often uses all 
or many of the pixels in the input data file for its analysis. The 
clustering algorithm has no regard for the contiguity of the pixels 
that define each cluster. 

• The Iterative Self-Organizing Data Analysis Technique 
(ISODATA) (Tou and Gonzalez, 1974) clustering method uses 
spectral distance as in the sequential method, but iteratively 
classifies the pixels, redefines the criteria for each class, and 
classifies again, so that the spectral distance patterns in the data 
gradually emerge. 

• The RGB clustering method is more specialized than the 
ISODATA method. It applies to three-band, 8-bit data. RGB 
clustering plots pixels in three-dimensional feature space, and 
divides that space into sections that are used to define clusters.

Each of these methods is explained below, along with its advantages 
and disadvantages.

Some of the statistics terms used in this section are explained in 
“Math Topics”. 

ISODATA Clustering ISODATA is iterative in that it repeatedly performs an entire 
classification (outputting a thematic raster layer) and recalculates 
statistics. Self-Organizing refers to the way in which it locates 
clusters with minimum user input. 

The ISODATA method uses minimum spectral distance to assign a 
cluster for each candidate pixel. The process begins with a specified 
number of arbitrary cluster means or the means of existing 
signatures, and then it processes repetitively, so that those means 
shift to the means of the clusters in the data. 

Because the ISODATA method is iterative, it is not biased to the top 
of the data file, as are the one-pass clustering algorithms. 

Use the Unsupervised Classification utility in the Signature 
Editor to perform ISODATA clustering.

ISODATA Clustering Parameters

To perform ISODATA clustering, you specify: 

• N - the maximum number of clusters to be considered. Since 
each cluster is the basis for a class, this number becomes the 
maximum number of classes to be formed. The ISODATA process 
begins by determining N arbitrary cluster means. Some clusters 
with too few pixels can be eliminated, leaving less than N 
clusters. 
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• T - a convergence threshold, which is the maximum percentage 
of pixels whose class values are allowed to be unchanged 
between iterations. 

• M - the maximum number of iterations to be performed. 

Initial Cluster Means

On the first iteration of the ISODATA algorithm, the means of N 
clusters can be arbitrarily determined. After each iteration, a new 
mean for each cluster is calculated, based on the actual spectral 
locations of the pixels in the cluster, instead of the initial arbitrary 
calculation. Then, these new means are used for defining clusters in 
the next iteration. The process continues until there is little change 
between iterations (Swain, 1973). 

The initial cluster means are distributed in feature space along a 
vector that runs between the point at spectral coordinates 

(µ1-σ1, µ2-σ2, µ3-σ3, ... µn-σn) 

and the coordinates 

(µ1+σ1, µ2+σ2, µ3+σ3, ... µn+σn)

Such a vector in two dimensions is illustrated in Figure 95. The initial 
cluster means are evenly distributed between 

(µA-σA, µB-σB) and (µA+σA, µB+σB)

Figure 95: ISODATA Arbitrary Clusters

Pixel Analysis

Pixels are analyzed beginning with the upper left corner of the image 
and going left to right, block by block. 

The spectral distance between the candidate pixel and each cluster 
mean is calculated. The pixel is assigned to the cluster whose mean 
is the closest. The ISODATA function creates an output image file 
with a thematic raster layer and/or a signature file (.sig) as a result 
of the clustering. At the end of each iteration, an image file exists 
that shows the assignments of the pixels to the clusters. 
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Considering the regular, arbitrary assignment of the initial cluster 
means, the first iteration of the ISODATA algorithm always gives 
results similar to those in Figure 96.

Figure 96: ISODATA First Pass

For the second iteration, the means of all clusters are recalculated, 
causing them to shift in feature space. The entire process is 
repeated—each candidate pixel is compared to the new cluster 
means and assigned to the closest cluster mean.

Figure 97: ISODATA Second Pass

Percentage Unchanged

After each iteration, the normalized percentage of pixels whose 
assignments are unchanged since the last iteration is displayed in 
the dialog. When this number reaches T (the convergence 
threshold), the program terminates. 

It is possible for the percentage of unchanged pixels to never 
converge or reach T (the convergence threshold). Therefore, it may 
be beneficial to monitor the percentage, or specify a reasonable 
maximum number of iterations, M, so that the program does not run 
indefinitely. 

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Band A
data file values

B
an

d 
B

da
ta

 fi
le

 v
al

ue
s

Band A
data file values

B
an

d 
B

da
ta

 fi
le

 v
al

ue
s



Unsupervised Training / 258Field Guide

Principal Component Method

Whereas clustering creates signatures depending on pixels’ spectral 
reflectance by adding pixels together, the principal component 
method actually subtracts pixels. Principal Components Analysis 
(PCA) is a method of data compression. With it, you can eliminate 
data that is redundant by compacting it into fewer bands. 

The resulting bands are noncorrelated and independent. You may 
find these bands more interpretable than the source data. PCA can 
be performed on up to 256 bands with ERDAS IMAGINE. As a type of 
spectral enhancement, you are required to specify the number of 
components you want output from the original data.

Recommended Decision Rule

Although the ISODATA algorithm is the most similar to the minimum 
distance decision rule, the signatures can produce good results with 
any type of classification. Therefore, no particular decision rule is 
recommended over others. 

In most cases, the signatures created by ISODATA are merged, 
deleted, or appended to other signature sets. The image file created 
by ISODATA is the same as the image file that is created by a 
minimum distance classification, except for the nonconvergent pixels 
(100-T% of the pixels). 

Table 40: ISODATA Clustering

Advantages Disadvantages

Because it is iterative, clustering 
is not geographically biased to 
the top or bottom pixels of the 
data file.

The clustering process is time-
consuming, because it can repeat many 
times. 

This algorithm is highly 
successful at finding the 
spectral clusters that are 
inherent in the data. It does not 
matter where the initial 
arbitrary cluster means are 
located, as long as enough 
iterations are allowed.

Does not account for pixel spatial 
homogeneity. 

A preliminary thematic raster 
layer is created, which gives 
results similar to using a 
minimum distance classifier (as 
explained below) on the 
signatures that are created. This 
thematic raster layer can be 
used for analyzing and 
manipulating the signatures 
before actual classification takes 
place.
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Use the Merge and Delete options in the Signature Editor to 
manipulate signatures. 

Use the Unsupervised Classification utility in the Signature 
Editor to perform ISODATA clustering, generate signatures, and 
classify the resulting signatures.

RGB Clustering

The RGB Clustering and Advanced RGB Clustering functions in 
Image Interpreter create a thematic raster layer. However, no 
signature file is created and no other classification decision rule 
is used. In practice, RGB Clustering differs greatly from the 
other clustering methods, but it does employ a clustering 
algorithm.

RGB clustering is a simple classification and data compression 
technique for three bands of data. It is a fast and simple algorithm 
that quickly compresses a three-band image into a single band 
pseudocolor image, without necessarily classifying any particular 
features.

The algorithm plots all pixels in 3-dimensional feature space and 
then partitions this space into clusters on a grid. In the more 
simplistic version of this function, each of these clusters becomes a 
class in the output thematic raster layer. 

The advanced version requires that a minimum threshold on the 
clusters be set so that only clusters at least as large as the threshold 
become output classes. This allows for more color variation in the 
output file. Pixels that do not fall into any of the remaining clusters 
are assigned to the cluster with the smallest city-block distance from 
the pixel. In this case, the city-block distance is calculated as the 
sum of the distances in the red, green, and blue directions in 3-
dimensional space.

Along each axis of the three-dimensional scatterplot, each input 
histogram is scaled so that the partitions divide the histograms 
between specified limits—either a specified number of standard 
deviations above and below the mean, or between the minimum and 
maximum data values for each band. 

The default number of divisions per band is listed below:

• Red is divided into 7 sections (32 for advanced version)

• Green is divided into 6 sections (32 for advanced version)

• Blue is divided into 6 sections (32 for advanced version)
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Figure 98: RGB Clustering

Partitioning Parameters

It is necessary to specify the number of R, G, and B sections in each 
dimension of the 3-dimensional scatterplot. The number of sections 
should vary according to the histograms of each band. Broad 
histograms should be divided into more sections, and narrow 
histograms should be divided into fewer sections (see Figure 98). 

It is possible to interactively change these parameters in the 
RGB Clustering function in the Image Interpreter. The number 
of classes is calculated based on the current parameters, and it 
displays on the command screen. 
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Table 41: RGB Clustering

Advantages Disadvantages

The fastest classification 
method. It is designed to 
provide a fast, simple 
classification for applications 
that do not require specific 
classes. 

Exactly three bands must be input, 
which is not suitable for all applications. 

Not biased to the top or bottom 
of the data file. The order in 
which the pixels are examined 
does not influence the outcome. 

Does not always create thematic 
classes that can be analyzed for 
informational purposes. 



Field Guide Signature Files / 261

Tips

Some starting values that usually produce good results with the 
simple RGB clustering are:

R = 7

G = 6

B = 6

which results in 7 × 6 × 6 = 252 classes.

To decrease the number of output colors/classes or to darken the 
output, decrease these values.

For the Advanced RGB clustering function, start with higher values 
for R, G, and B. Adjust by raising the threshold parameter and/or 
decreasing the R, G, and B parameter values until the desired 
number of output classes is obtained.

Signature Files A signature is a set of data that defines a training sample, feature 
space object (AOI), or cluster. The signature is used in a 
classification process. Each classification decision rule (algorithm) 
requires some signature attributes as input—these are stored in the 
signature file (.sig). Signatures in ERDAS IMAGINE can be 
parametric or nonparametric. 

The following attributes are standard for all signatures (parametric 
and nonparametric):

• name—identifies the signature and is used as the class name in 
the output thematic raster layer. The default signature name is 
Class <number>. 

• color—the color for the signature and the color for the class in the 
output thematic raster layer. This color is also used with other 
signature visualization functions, such as alarms, masking, 
ellipses, etc. 

• value—the output class value for the signature. The output class 
value does not necessarily need to be the class number of the 
signature. This value should be a positive integer.

(Advanced version only) A 
highly interactive function, 
allowing an iterative adjustment 
of the parameters until the 
number of clusters and the 
thresholds are satisfactory for 
analysis. 

Table 41: RGB Clustering

Advantages Disadvantages
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• order—the order to process the signatures for order-dependent 
processes, such as signature alarms and parallelepiped 
classifications.

• parallelepiped limits—the limits used in the parallelepiped 
classification.

Parametric Signature

A parametric signature is based on statistical parameters (e.g., 
mean and covariance matrix) of the pixels that are in the training 
sample or cluster. A parametric signature includes the following 
attributes in addition to the standard attributes for signatures:

• the number of bands in the input image (as processed by the 
training program)

• the minimum and maximum data file value in each band for each 
sample or cluster (minimum vector and maximum vector)

• the mean data file value in each band for each sample or cluster 
(mean vector)

• the covariance matrix for each sample or cluster

• the number of pixels in the sample or cluster

Nonparametric Signature

A nonparametric signature is based on an AOI that you define in the 
feature space image for the image file being classified. A 
nonparametric classifier uses a set of nonparametric signatures to 
assign pixels to a class based on their location, either inside or 
outside the area in the feature space image. 

The format of the .sig file is described in the On-Line Help. 
Information on these statistics can be found in “Math Topics”. 

Evaluating 
Signatures 

Once signatures are created, they can be evaluated, deleted, 
renamed, and merged with signatures from other files. Merging 
signatures enables you to perform complex classifications with 
signatures that are derived from more than one training method 
(supervised and/or unsupervised, parametric and/or 
nonparametric).

Use the Signature Editor to view the contents of each signature, 
manipulate signatures, and perform your own mathematical 
tests on the statistics.
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Using Signature Data

There are tests to perform that can help determine whether the 
signature data are a true representation of the pixels to be classified 
for each class. You can evaluate signatures that were created either 
from supervised or unsupervised training. The evaluation methods in 
ERDAS IMAGINE include: 

• Alarm—using your own pattern recognition ability, you view the 
estimated classified area for a signature (using the parallelepiped 
decision rule) against a display of the original image. 

• Ellipse—view ellipse diagrams and scatterplots of data file values 
for every pair of bands. 

• Contingency matrix—do a quick classification of the pixels in a 
set of training samples to see what percentage of the sample 
pixels are actually classified as expected. These percentages are 
presented in a contingency matrix. This method is for supervised 
training only, for which polygons of the training samples exist. 

• Divergence—measure the divergence (statistical distance) 
between signatures and determine band subsets that maximize 
the classification. 

• Statistics and histograms—analyze statistics and histograms of 
the signatures to make evaluations and comparisons. 

NOTE: If the signature is nonparametric (i.e., a feature space 
signature), you can use only the alarm evaluation method. 

After analyzing the signatures, it would be beneficial to merge or 
delete them, eliminate redundant bands from the data, add new 
bands of data, or perform any other operations to improve the 
classification. 

Alarm The alarm evaluation enables you to compare an estimated 
classification of one or more signatures against the original data, as 
it appears in the Viewer. According to the parallelepiped decision 
rule, the pixels that fit the classification criteria are highlighted in the 
displayed image. You also have the option to indicate an overlap by 
having it appear in a different color.

With this test, you can use your own pattern recognition skills, or 
some ground truth data, to determine the accuracy of a signature. 

Use the Signature Alarm utility in the Signature Editor to 
perform n-dimensional alarms on the image in the Viewer, using 
the parallelepiped decision rule. The alarm utility creates a 
functional layer, and the Viewer allows you to toggle between 
the image layer and the functional layer.
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Ellipse In this evaluation, ellipses of concentration are calculated with the 
means and standard deviations stored in the signature file. It is also 
possible to generate parallelepiped rectangles, means, and labels. 

In this evaluation, the mean and the standard deviation of every 
signature are used to represent the ellipse in 2-dimensional feature 
space. The ellipse is displayed in a feature space image.

Ellipses are explained and illustrated in “Math Topics” under the 
discussion of Scatterplots. 

When the ellipses in the feature space image show extensive 
overlap, then the spectral characteristics of the pixels represented 
by the signatures cannot be distinguished in the two bands that are 
graphed. In the best case, there is no overlap. Some overlap, 
however, is expected. 

Figure 99 shows how ellipses are plotted and how they can overlap. 
The first graph shows how the ellipses are plotted based on the range 
of 2 standard deviations from the mean. This range can be altered, 
changing the ellipse plots. Analyzing the plots with differing numbers 
of standard deviations is useful for determining the limits of a 
parallelepiped classification.

Figure 99: Ellipse Evaluation of Signatures

By analyzing the ellipse graphs for all band pairs, you can determine 
which signatures and which bands provide accurate classification 
results. 
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Use the Signature Editor to create a feature space image and to 
view an ellipse(s) of signature data.

Contingency Matrix NOTE: This evaluation classifies all of the pixels in the selected AOIs 
and compares the results to the pixels of a training sample.

The pixels of each training sample are not always so homogeneous 
that every pixel in a sample is actually classified to its corresponding 
class. Each sample pixel only weights the statistics that determine 
the classes. However, if the signature statistics for each sample are 
distinct from those of the other samples, then a high percentage of 
each sample’s pixels is classified as expected. 

In this evaluation, a quick classification of the sample pixels is 
performed using the minimum distance, maximum likelihood, or 
Mahalanobis distance decision rule. Then, a contingency matrix is 
presented, which contains the number and percentages of pixels that 
are classified as expected. 

Use the Signature Editor to perform the contingency matrix 
evaluation.

Separability Signature separability is a statistical measure of distance between 
two signatures. Separability can be calculated for any combination of 
bands that is used in the classification, enabling you to rule out any 
bands that are not useful in the results of the classification. 

For the distance (Euclidean) evaluation, the spectral distance 
between the mean vectors of each pair of signatures is computed. If 
the spectral distance between two samples is not significant for any 
pair of bands, then they may not be distinct enough to produce a 
successful classification. 

The spectral distance is also the basis of the minimum distance 
classification (as explained below). Therefore, computing the 
distances between signatures helps you predict the results of a 
minimum distance classification. 

Use the Signature Editor to compute signature separability and 
distance and automatically generate the report.

The formulas used to calculate separability are related to the 
maximum likelihood decision rule. Therefore, evaluating signature 
separability helps you predict the results of a maximum likelihood 
classification. The maximum likelihood decision rule is explained 
below.

There are three options for calculating the separability. All of these 
formulas take into account the covariances of the signatures in the 
bands being compared, as well as the mean vectors of the 
signatures. 
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Refer to “Math Topics” for information on the mean vector and 
covariance matrix. 

Divergence

The formula for computing Divergence (Dij) is as follows: 

 

Where:

i and j = the two signatures (classes) being compared

Ci = the covariance matrix of signature i

µi = the mean vector of signature i

tr = the trace function (matrix algebra)

T = the transposition function

Source: Swain and Davis, 1978

Transformed Divergence

The formula for computing Transformed Divergence (TD) is as 
follows:

 

Where:

i and j = the two signatures (classes) being compared

Ci = the covariance matrix of signature i

µi = the mean vector of signature i

tr = the trace function (matrix algebra)

T = the transposition function

Source: Swain and Davis, 1978
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According to Jensen, the transformed divergence “gives an 
exponentially decreasing weight to increasing distances between the 
classes.” The scale of the divergence values can range from 0 to 
2,000. Interpreting your results after applying transformed 
divergence requires you to analyze those numerical divergence 
values. As a general rule, if the result is greater than 1,900, then the 
classes can be separated. Between 1,700 and 1,900, the separation 
is fairly good. Below 1,700, the separation is poor (Jensen, 1996).

Jeffries-Matusita Distance 

The formula for computing Jeffries-Matusita Distance (JM) is as 
follows:

 

Where:

i and j = the two signatures (classes) being compared 

Ci = the covariance matrix of signature i 

µi = the mean vector of signature i 

ln = the natural logarithm function

|Ci| = the determinant of Ci (matrix algebra)

Source: Swain and Davis, 1978

According to Jensen, “The JM distance has a saturating behavior with 
increasing class separation like transformed divergence. However, it 
is not as computationally efficient as transformed divergence” 
(Jensen, 1996).

Separability 

Both transformed divergence and Jeffries-Matusita distance have 
upper and lower bounds. If the calculated divergence is equal to the 
appropriate upper bound, then the signatures can be said to be 
totally separable in the bands being studied. A calculated divergence 
of zero means that the signatures are inseparable. 

• TD is between 0 and 2000. 

• JM is between 0 and 1414. 

A separability listing is a report of the computed divergence for every 
class pair and one band combination. The listing contains every 
divergence value for the bands studied for every possible pair of 
signatures. 
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The separability listing also contains the average divergence and the 
minimum divergence for the band set. These numbers can be 
compared to other separability listings (for other band 
combinations), to determine which set of bands is the most useful 
for classification. 

Weight Factors 

As with the Bayesian classifier (explained below with maximum 
likelihood), weight factors may be specified for each signature. 
These weight factors are based on a priori probabilities that any 
given pixel is assigned to each class. For example, if you know that 
twice as many pixels should be assigned to Class A as to Class B, 
then Class A should receive a weight factor that is twice that of Class 
B. 

NOTE: The weight factors do not influence the divergence equations 
(for TD or JM), but they do influence the report of the best average 
and best minimum separability. 

The weight factors for each signature are used to compute a 
weighted divergence with the following calculation: 

Where:

i and j  = the two signatures (classes) being compared

Uij = the unweighted divergence between i and j

Wij = the weighted divergence between i and j

c = the number of signatures (classes)

fi = the weight factor for signature i

Probability of Error

The Jeffries-Matusita distance is related to the pairwise probability of 
error, which is the probability that a pixel assigned to class i is 
actually in class j. Within a range, this probability can be estimated 
according to the expression below:
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Where:

i and j = the signatures (classes) being compared

JMij = the Jeffries-Matusita distance between i and j

Pe = the probability that a pixel is misclassified from i to 
j

Source: Swain and Davis, 1978

Signature Manipulation In many cases, training must be repeated several times before the 
desired signatures are produced. Signatures can be gathered from 
different sources—different training samples, feature space images, 
and different clustering programs—all using different techniques. 
After each signature file is evaluated, you may merge, delete, or 
create new signatures. The desired signatures can finally be moved 
to one signature file to be used in the classification. 

The following operations upon signatures and signature files are 
possible with ERDAS IMAGINE:

• View the contents of the signature statistics

• View histograms of the samples or clusters that were used to 
derive the signatures

• Delete unwanted signatures

• Merge signatures together, so that they form one larger class 
when classified

• Append signatures from other files. You can combine signatures 
that are derived from different training methods for use in one 
classification.

Use the Signature Editor to view statistics and histogram listings 
and to delete, merge, append, and rename signatures within a 
signature file.

Classification 
Decision Rules 

Once a set of reliable signatures has been created and evaluated, the 
next step is to perform a classification of the data. Each pixel is 
analyzed independently. The measurement vector for each pixel is 
compared to each signature, according to a decision rule, or 
algorithm. Pixels that pass the criteria that are established by the 
decision rule are then assigned to the class for that signature. ERDAS 
IMAGINE enables you to classify the data both parametrically with 
statistical representation, and nonparametrically as objects in 
feature space. Figure 100 shows the flow of an image pixel through 
the classification decision making process in ERDAS IMAGINE (Kloer, 
1994).
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If a nonparametric rule is not set, then the pixel is classified using 
only the parametric rule. All of the parametric signatures are tested. 
If a nonparametric rule is set, the pixel is tested against all of the 
signatures with nonparametric definitions. This rule results in the 
following conditions:

• If the nonparametric test results in one unique class, the pixel is 
assigned to that class. 

• If the nonparametric test results in zero classes (i.e., the pixel 
lies outside all the nonparametric decision boundaries), then the 
unclassified rule is applied. With this rule, the pixel is either 
classified by the parametric rule or left unclassified. 

• If the pixel falls into more than one class as a result of the 
nonparametric test, the overlap rule is applied. With this rule, the 
pixel is either classified by the parametric rule, processing order, 
or left unclassified. 

Nonparametric Rules ERDAS IMAGINE provides these decision rules for nonparametric 
signatures: 

• parallelepiped

• feature space

Unclassified Options

ERDAS IMAGINE provides these options if the pixel is not classified 
by the nonparametric rule:

• parametric rule

• unclassified

Overlap Options

ERDAS IMAGINE provides these options if the pixel falls into more 
than one feature space object:

• parametric rule

• by order

• unclassified

Parametric Rules ERDAS IMAGINE provides these commonly-used decision rules for 
parametric signatures: 

• minimum distance

• Mahalanobis distance

• maximum likelihood (with Bayesian variation) 
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Figure 100: Classification Flow Diagram

Parallelepiped In the parallelepiped decision rule, the data file values of the 
candidate pixel are compared to upper and lower limits. These limits 
can be either: 

• the minimum and maximum data file values of each band in the 
signature, 

• the mean of each band, plus and minus a number of standard 
deviations, or 

• any limits that you specify, based on your knowledge of the data 
and signatures. This knowledge may come from the signature 
evaluation techniques discussed above. 

These limits can be set using the Parallelepiped Limits utility in 
the Signature Editor. 
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There are high and low limits for every signature in every band. 
When a pixel’s data file values are between the limits for every band 
in a signature, then the pixel is assigned to that signature’s class. 
Figure 101 is a two-dimensional example of a parallelepiped 
classification.

Figure 101: Parallelepiped Classification Using ± Two 
Standard Deviations as Limits

The large rectangles in Figure 101 are called parallelepipeds. They 
are the regions within the limits for each signature. 

Overlap Region

In cases where a pixel may fall into the overlap region of two or more 
parallelepipeds, you must define how the pixel can be classified. 

• The pixel can be classified by the order of the signatures. If one 
of the signatures is first and the other signature is fourth, the 
pixel is assigned to the first signature’s class. This order can be 
set in the Signature Editor.

• The pixel can be classified by the defined parametric decision 
rule. The pixel is tested against the overlapping signatures only. 
If neither of these signatures is parametric, then the pixel is left 
unclassified. If only one of the signatures is parametric, then the 
pixel is automatically assigned to that signature’s class.

• The pixel can be left unclassified.
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Regions Outside of the Boundaries

If the pixel does not fall into one of the parallelepipeds, then you 
must define how the pixel can be classified.

• The pixel can be classified by the defined parametric decision 
rule. The pixel is tested against all of the parametric signatures. 
If none of the signatures is parametric, then the pixel is left 
unclassified.

• The pixel can be left unclassified.

Use the Supervised Classification utility in the Signature Editor 
to perform a parallelepiped classification.

Table 42: Parallelepiped Decision Rule

Advantages Disadvantages

Fast and simple, since the data 
file values are compared to 
limits that remain constant for 
each band in each signature. 

Since parallelepipeds have corners, 
pixels that are actually quite far, 
spectrally, from the mean of the 
signature may be classified. An 
example of this is shown in Figure 102.

Often useful for a first-pass, 
broad classification, this 
decision rule quickly narrows 
down the number of possible 
classes to which each pixel can 
be assigned before the more 
time-consuming calculations are 
made, thus cutting processing 
time (e.g., minimum distance, 
Mahalanobis distance, or 
maximum likelihood).

Not dependent on normal 
distributions.
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Figure 102: Parallelepiped Corners Compared to the 
Signature Ellipse

Feature Space The feature space decision rule determines whether or not a 
candidate pixel lies within the nonparametric signature in the feature 
space image. When a pixel’s data file values are in the feature space 
signature, then the pixel is assigned to that signature’s class. Figure 
103 is a two-dimensional example of a feature space classification. 
The polygons in this figure are AOIs used to define the feature space 
signatures.

Figure 103: Feature Space Classification

Overlap Region

In cases where a pixel may fall into the overlap region of two or more 
AOIs, you must define how the pixel can be classified. 

• The pixel can be classified by the order of the feature space 
signatures. If one of the signatures is first and the other 
signature is fourth, the pixel is assigned to the first signature’s 
class. This order can be set in the Signature Editor.
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• The pixel can be classified by the defined parametric decision 
rule. The pixel is tested against the overlapping signatures only. 
If neither of these feature space signatures is parametric, then 
the pixel is left unclassified. If only one of the signatures is 
parametric, then the pixel is assigned automatically to that 
signature’s class.

• The pixel can be left unclassified.

Regions Outside of the AOIs

If the pixel does not fall into one of the AOIs for the feature space 
signatures, then you must define how the pixel can be classified.

• The pixel can be classified by the defined parametric decision 
rule. The pixel is tested against all of the parametric signatures. 
If none of the signatures is parametric, then the pixel is left 
unclassified.

• The pixel can be left unclassified.

Use the Decision Rules utility in the Signature Editor to perform 
a feature space classification.

Minimum Distance The minimum distance decision rule (also called spectral distance) 
calculates the spectral distance between the measurement vector for 
the candidate pixel and the mean vector for each signature.

Table 43: Feature Space Decision Rule

Advantages Disadvantages

Often useful for a first-pass, 
broad classification.

The feature space decision rule allows 
overlap and unclassified pixels.

Provides an accurate way to 
classify a class with a 
nonnormal distribution (e.g., 
residential and urban).

The feature space image may be 
difficult to interpret.

Certain features may be more 
visually identifiable, which can 
help discriminate between 
classes that are spectrally 
similar and hard to differentiate 
with parametric information.

The feature space method is 
fast.
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Figure 104: Minimum Spectral Distance

In Figure 104, spectral distance is illustrated by the lines from the 
candidate pixel to the means of the three signatures. The candidate 
pixel is assigned to the class with the closest mean. 

The equation for classifying by spectral distance is based on the 
equation for Euclidean distance:

Where:

n = number of bands (dimensions)

i = a particular band

c = a particular class

Xxyi = data file value of pixel x,y in band i

µci = mean of data file values in band i for the sample for 
class c

SDxyc = spectral distance from pixel x,y to the mean of 
class c

Source: Swain and Davis, 1978

When spectral distance is computed for all possible values of c (all 
possible classes), the class of the candidate pixel is assigned to the 
class for which SD is the lowest. 
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Mahalanobis Distance

The Mahalanobis distance algorithm assumes that the 
histograms of the bands have normal distributions. If this is not 
the case, you may have better results with the parallelepiped or 
minimum distance decision rule, or by performing a first-pass 
parallelepiped classification. 

Mahalanobis distance is similar to minimum distance, except that the 
covariance matrix is used in the equation. Variance and covariance 
are figured in so that clusters that are highly varied lead to similarly 
varied classes, and vice versa. For example, when classifying urban 
areas—typically a class whose pixels vary widely—correctly classified 
pixels may be farther from the mean than those of a class for water, 
which is usually not a highly varied class (Swain and Davis, 1978). 

The equation for the Mahalanobis distance classifier is as follows:

D = (X-Mc)
T (Covc

-1) (X-Mc) 

Table 44: Minimum Distance Decision Rule

Advantages Disadvantages

Since every pixel is spectrally 
closer to either one sample 
mean or another, there are no 
unclassified pixels. 

Pixels that should be unclassified (i.e., 
they are not spectrally close to the 
mean of any sample, within limits that 
are reasonable to you) become 
classified. However, this problem is 
alleviated by thresholding out the 
pixels that are farthest from the means 
of their classes. (See the discussion on 
"Thresholding".) 

The fastest decision rule to 
compute, except for 
parallelepiped. 

Does not consider class variability. For 
example, a class like an urban land 
cover class is made up of pixels with a 
high variance, which may tend to be 
farther from the mean of the signature. 
Using this decision rule, outlying urban 
pixels may be improperly classified. 
Inversely, a class with less variance, 
like water, may tend to overclassify 
(that is, classify more pixels than are 
appropriate to the class), because the 
pixels that belong to the class are 
usually spectrally closer to their mean 
than those of other classes to their 
means. 
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Where:

D = Mahalanobis distance

c = a particular class

X = the measurement vector of the candidate pixel

Mc = the mean vector of the signature of class c

Covc = the covariance matrix of the pixels in the signature 
of class c

Covc
-1 =  inverse of Covc 

T = transposition function

The pixel is assigned to the class, c, for which D is the lowest. 

Maximum 
Likelihood/Bayesian

The maximum likelihood algorithm assumes that the histograms 
of the bands of data have normal distributions. If this is not the 
case, you may have better results with the parallelepiped or 
minimum distance decision rule, or by performing a first-pass 
parallelepiped classification. 

The maximum likelihood decision rule is based on the probability that 
a pixel belongs to a particular class. The basic equation assumes that 
these probabilities are equal for all classes, and that the input bands 
have normal distributions. 

Table 45: Mahalanobis Decision Rule

Advantages Disadvantages

Takes the variability of classes 
into account, unlike minimum 
distance or parallelepiped. 

Tends to overclassify signatures with 
relatively large values in the covariance 
matrix. If there is a large dispersion of 
the pixels in a cluster or training 
sample, then the covariance matrix of 
that signature contains large values. 

May be more useful than 
minimum distance in cases 
where statistical criteria (as 
expressed in the covariance 
matrix) must be taken into 
account, but the weighting 
factors that are available with 
the maximum 
likelihood/Bayesian option are 
not needed. 

Slower to compute than parallelepiped 
or minimum distance. 

Mahalanobis distance is parametric, 
meaning that it relies heavily on a 
normal distribution of the data in each 
input band. 
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Bayesian Classifier 

If you have a priori knowledge that the probabilities are not equal for 
all classes, you can specify weight factors for particular classes. This 
variation of the maximum likelihood decision rule is known as the 
Bayesian decision rule (Hord, 1982). Unless you have a priori 
knowledge of the probabilities, it is recommended that they not be 
specified. In this case, these weights default to 1.0 in the equation. 

The equation for the maximum likelihood/Bayesian classifier is as 
follows: 

D = ln(ac) - [0.5 ln(|Covc|)] - [0.5 (X-Mc)T (Covc
-1) (X-Mc)] 

Where:

D = weighted distance (likelihood)

c = a particular class

X = the measurement vector of the candidate pixel

Mc = the mean vector of the sample of class c

ac = percent probability that any candidate pixel is a 
member of class c (defaults to 1.0, or is entered 
from a priori knowledge)

Covc = the covariance matrix of the pixels in the sample of 
class c

|Covc| = determinant of Covc (matrix algebra)

Covc
-1 = inverse of Covc (matrix algebra)

ln = natural logarithm function

T = transposition function (matrix algebra)

The inverse and determinant of a matrix, along with the difference 
and transposition of vectors, would be explained in a textbook of 
matrix algebra. 

The pixel is assigned to the class, c, for which D is the lowest. 
Table 46: Maximum Likelihood/Bayesian Decision Rule

Advantages Disadvantages

The most accurate of the 
classifiers in the ERDAS 
IMAGINE system (if the input 
samples/clusters have a normal 
distribution), because it takes 
the most variables into 
consideration. 

An extensive equation that takes a long 
time to compute. The computation time 
increases with the number of input 
bands. 

Takes the variability of classes 
into account by using the 
covariance matrix, as does 
Mahalanobis distance. 

Maximum likelihood is parametric, 
meaning that it relies heavily on a 
normal distribution of the data in each 
input band. 
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Fuzzy 
Methodology

Fuzzy Classification The Fuzzy Classification method takes into account that there are 
pixels of mixed make-up, that is, a pixel cannot be definitively 
assigned to one category. Jensen notes that, “Clearly, there needs 
to be a way to make the classification algorithms more sensitive to 
the imprecise (fuzzy) nature of the real world” (Jensen, 1996). 

Fuzzy classification is designed to help you work with data that may 
not fall into exactly one category or another. Fuzzy classification 
works using a membership function, wherein a pixel’s value is 
determined by whether it is closer to one class than another. A fuzzy 
classification does not have definite boundaries, and each pixel can 
belong to several different classes (Jensen, 1996).

Like traditional classification, fuzzy classification still uses training, 
but the biggest difference is that “it is also possible to obtain 
information on the various constituent classes found in a mixed 
pixel. . .” (Jensen, 1996). Jensen goes on to explain that the process 
of collecting training sites in a fuzzy classification is not as strict as 
a traditional classification. In the fuzzy method, the training sites do 
not have to have pixels that are exactly the same. 

Once you have a fuzzy classification, the fuzzy convolution utility 
allows you to perform a moving window convolution on a fuzzy 
classification with multiple output class assignments. Using the 
multilayer classification and distance file, the convolution creates a 
new single class output file by computing a total weighted distance 
for all classes in the window.

Fuzzy Convolution The Fuzzy Convolution operation creates a single classification layer 
by calculating the total weighted inverse distance of all the classes 
in a window of pixels. Then, it assigns the center pixel in the class 
with the largest total inverse distance summed over the entire set of 
fuzzy classification layers. 

Tends to overclassify signatures with 
relatively large values in the covariance 
matrix. If there is a large dispersion of 
the pixels in a cluster or training 
sample, then the covariance matrix of 
that signature contains large values. 

Table 46: Maximum Likelihood/Bayesian Decision Rule

Advantages Disadvantages
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This has the effect of creating a context-based classification to 
reduce the speckle or salt and pepper in the classification. Classes 
with a very small distance value remain unchanged while classes 
with higher distance values may change to a neighboring value if 
there is a sufficient number of neighboring pixels with class values 
and small corresponding distance values. The following equation is 
used in the calculation:

Where:

i = row index of window

j = column index of window

s = size of window (3, 5, or 7)

l = layer index of fuzzy set

n = number of fuzzy layers used

W = weight table for window

k = class value

D[k] = distance file value for class k

T[k] = total weighted distance of window for class k

The center pixel is assigned the class with the maximum T[k]. 

Expert 
Classification

Expert classification can be performed using the IMAGINE Expert 
Classifier™. The expert classification software provides a rules-based 
approach to multispectral image classification, post-classification 
refinement, and GIS modeling. In essence, an expert classification 
system is a hierarchy of rules, or a decision tree, that describes the 
conditions under which a set of low level constituent information gets 
abstracted into a set of high level informational classes. The 
constituent information consists of user-defined variables and 
includes raster imagery, vector coverages, spatial models, external 
programs, and simple scalars.

A rule is a conditional statement, or list of conditional statements, 
about the variable’s data values and/or attributes that determine an 
informational component or hypotheses. Multiple rules and 
hypotheses can be linked together into a hierarchy that ultimately 
describes a final set of target informational classes or terminal 
hypotheses. Confidence values associated with each condition are 
also combined to provide a confidence image corresponding to the 
final output classified image.
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The IMAGINE Expert Classifier is composed of two parts: the 
Knowledge Engineer and the Knowledge Classifier. The Knowledge 
Engineer provides the interface for an expert with first-hand 
knowledge of the data and the application to identify the variables, 
rules, and output classes of interest and create the hierarchical 
decision tree. The Knowledge Classifier provides an interface for a 
nonexpert to apply the knowledge base and create the output 
classification.

Knowledge Engineer With the Knowledge Engineer, you can open knowledge bases, which 
are presented as decision trees in editing windows. 

Figure 105: Knowledge Engineer Editing Window

In Figure 105, the upper left corner of the editing window is an 
overview of the entire decision tree with a green box indicating the 
position within the knowledge base of the currently displayed portion 
of the decision tree. This box can be dragged to change the view of 
the decision tree graphic in the display window on the right. The 
branch containing the currently selected hypotheses, rule, or 
condition is highlighted in the overview.

The decision tree grows in depth when the hypothesis of one rule is 
referred to by a condition of another rule. The terminal hypotheses 
of the decision tree represent the final classes of interest. 
Intermediate hypotheses may also be flagged as being a class of 
interest. This may occur when there is an association between 
classes. 

Figure 106 represents a single branch of a decision tree depicting a 
hypothesis, its rule, and conditions. 
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Figure 106: Example of a Decision Tree Branch

In this example, the rule, which is Gentle Southern Slope, 
determines the hypothesis, Good Location. The rule has four 
conditions depicted on the right side, all of which must be satisfied 
for the rule to be true.

However, the rule may be split if either Southern or Gentle slope 
defines the Good Location hypothesis. While both conditions must 
still be true to fire a rule, only one rule must be true to satisfy the 
hypothesis. 

Figure 107: Split Rule Decision Tree Branch

Variable Editor

The Knowledge Engineer also makes use of a Variable Editor when 
classifying images. The Variable editor provides for the definition of 
the variable objects to be used in the rules conditions. 

The two types of variables are raster and scalar. Raster variables 
may be defined by imagery, feature layers (including vector layers), 
graphic spatial models, or by running other programs. Scalar 
variables my be defined with an explicit value, or defined as the 
output from a model or external program.

Gentle Southern Slope

Aspect > 135

Aspect <= 225

Slope < 12

Slope > 0

Good Location

Hypothesis Rule

Conditions

Southern SlopeGood Location

Aspect > 135

Aspect <= 225

Slope < 12

Slope > 0

Gentle Slope
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Evaluating the Output of the Knowledge Engineer

The task of creating a useful, well-constructed knowledge base 
requires numerous iterations of trial, evaluation, and refinement. To 
facilitate this process, two options are provided. First, you can use 
the Test Classification to produce a test classification using the 
current knowledge base. Second, you can use the Classification 
Pathway Cursor to evaluate the results. This tool allows you to move 
a crosshair over the image in a Viewer to establish a confidence level 
for areas in the image.

Knowledge Classifier The Knowledge Classifier is composed of two parts: an application 
with a user interface, and a command line executable. The user 
interface application allows you to input a limited set of parameters 
to control the use of the knowledge base. The user interface is 
designed as a wizard to lead you though pages of input parameters.

After selecting a knowledge base, you are prompted to select 
classes. The following is an example classes dialog: 

Figure 108: Knowledge Classifier Classes of Interest

After you select the input data for classification, the classification 
output options, output files, output area, output cell size, and output 
map projection, the Knowledge Classifier process can begin. An 
inference engine then evaluates all hypotheses at each location 
(calculating variable values, if required), and assigns the hypothesis 
with the highest confidence. The output of the Knowledge Classifier 
is a thematic image, and optionally, a confidence image.

Evaluating 
Classification 

After a classification is performed, these methods are available for 
testing the accuracy of the classification: 

• Thresholding—Use a probability image file to screen out 
misclassified pixels. 

• Accuracy Assessment—Compare the classification to ground 
truth or other data. 
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Thresholding Thresholding is the process of identifying the pixels in a classified 
image that are the most likely to be classified incorrectly. These 
pixels are put into another class (usually class 0). These pixels are 
identified statistically, based upon the distance measures that were 
used in the classification decision rule. 

Distance File 

When a minimum distance, Mahalanobis distance, or maximum 
likelihood classification is performed, a distance image file can be 
produced in addition to the output thematic raster layer. A distance 
image file is a one-band, 32-bit offset continuous raster layer in 
which each data file value represents the result of a spectral distance 
equation, depending upon the decision rule used. 

• In a minimum distance classification, each distance value is the 
Euclidean spectral distance between the measurement vector of 
the pixel and the mean vector of the pixel’s class. 

• In a Mahalanobis distance or maximum likelihood classification, 
the distance value is the Mahalanobis distance between the 
measurement vector of the pixel and the mean vector of the 
pixel’s class. 

The brighter pixels (with the higher distance file values) are 
spectrally farther from the signature means for the classes to which 
they re assigned. They are more likely to be misclassified. 

The darker pixels are spectrally nearer, and more likely to be 
classified correctly. If supervised training was used, the darkest 
pixels are usually the training samples. 

Figure 109: Histogram of a Distance Image

Figure 109 shows how the histogram of the distance image usually 
appears. This distribution is called a chi-square distribution, as 
opposed to a normal distribution, which is a symmetrical bell curve. 

Threshold 

The pixels that are the most likely to be misclassified have the higher 
distance file values at the tail of this histogram. At some point that 
you define—either mathematically or visually—the tail of this 
histogram is cut off. The cutoff point is the threshold. 
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To determine the threshold: 

• interactively change the threshold with the mouse, when a 
distance histogram is displayed while using the threshold 
function. This option enables you to select a chi-square value by 
selecting the cut-off value in the distance histogram, or

• input a chi-square parameter or distance measurement, so that 
the threshold can be calculated statistically.

In both cases, thresholding has the effect of cutting the tail off of the 
histogram of the distance image file, representing the pixels with the 
highest distance values. 

Figure 110: Interactive Thresholding Tips

Figure 110 shows some example distance histograms. With each 
example is an explanation of what the curve might mean, and how 
to threshold it.

Smooth chi-square shape—try to find the breakpoint where 
the curve becomes more horizontal, and cut off the tail.

Minor mode(s) (peaks) in the curve probably indicate that 
the class picked up other features that were not represented 
in the signature. You probably want to threshold these 
features out.

Not a good class. The signature for this class probably 
represented a polymodal (multipeaked) distribution.

Peak of the curve is shifted from 0. Indicates that the 
signature mean is off-center from the pixels it represents. 
You may need to take a new signature and reclassify.
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Chi-square Statistics 

If the minimum distance classifier is used, then the threshold is 
simply a certain spectral distance. However, if Mahalanobis or 
maximum likelihood are used, then chi-square statistics are used to 
compare probabilities (Swain and Davis, 1978). 

When statistics are used to calculate the threshold, the threshold is 
more clearly defined as follows: 

T is the distance value at which C% of the pixels in a class have a 
distance value greater than or equal to T. 

Where:

T = the threshold for a class

C% = the percentage of pixels that are believed to be 
misclassified, known as the confidence level

T is related to the distance values by means of chi-square statistics. 
The value X2 (chi-squared) is used in the equation. X2 is a function 
of: 

• the number of bands of data used—known in chi-square statistics 
as the number of degrees of freedom

• the confidence level

When classifying an image in ERDAS IMAGINE, the classified image 
automatically has the degrees of freedom (i.e., number of bands) 
used for the classification. The chi-square table is built into the 
threshold application.

NOTE: In this application of chi-square statistics, the value of X2 is 
an approximation. Chi-square statistics are generally applied to 
independent variables (having no covariance), which is not usually 
true of image data. 

A further discussion of chi-square statistics can be found in a 
statistics text. 

Use the Classification Threshold utility to perform the 
thresholding.

Accuracy Assessment Accuracy assessment is a general term for comparing the 
classification to geographical data that are assumed to be true, in 
order to determine the accuracy of the classification process. 
Usually, the assumed-true data are derived from ground truth data. 
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It is usually not practical to ground truth or otherwise test every pixel 
of a classified image. Therefore, a set of reference pixels is usually 
used. Reference pixels are points on the classified image for which 
actual data are (or will be) known. The reference pixels are randomly 
selected (Congalton, 1991).

NOTE: You can use the ERDAS IMAGINE Accuracy Assessment utility 
to perform an accuracy assessment for any thematic layer. This layer 
does not have to be classified by ERDAS IMAGINE (e.g., you can run 
an accuracy assessment on a thematic layer that was classified in 
ERDAS Version 7.5 and imported into ERDAS IMAGINE).

Random Reference Pixels

When reference pixels are selected by the analyst, it is often 
tempting to select the same pixels for testing the classification that 
were used in the training samples. This biases the test, since the 
training samples are the basis of the classification. By allowing the 
reference pixels to be selected at random, the possibility of bias is 
lessened or eliminated (Congalton, 1991).

The number of reference pixels is an important factor in determining 
the accuracy of the classification. It has been shown that more than 
250 reference pixels are needed to estimate the mean accuracy of a 
class to within plus or minus five percent (Congalton, 1991). 

ERDAS IMAGINE uses a square window to select the reference pixels. 
The size of the window can be defined by you. Three different types 
of distribution are offered for selecting the random pixels:

• random—no rules are used

• stratified random—the number of points is stratified to the 
distribution of thematic layer classes

• equalized random—each class has an equal number of random 
points

Use the Accuracy Assessment utility to generate random 
reference points.

Accuracy Assessment CellArray

An Accuracy Assessment CellArray is created to compare the 
classified image with reference data. This CellArray is simply a list of 
class values for the pixels in the classified image file and the class 
values for the corresponding reference pixels. The class values for 
the reference pixels are input by you. The CellArray data reside in an 
image file. 

Use the Accuracy Assessment CellArray to enter reference pixels 
for the class values.
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Error Reports 

From the Accuracy Assessment CellArray, two kinds of reports can 
be derived. 

• The error matrix simply compares the reference points to the 
classified points in a c × c matrix, where c is the number of 
classes (including class 0). 

• The accuracy report calculates statistics of the percentages of 
accuracy, based upon the results of the error matrix.

When interpreting the reports, it is important to observe the 
percentage of correctly classified pixels and to determine the nature 
of errors of the producer and yourself.

Use the Accuracy Assessment utility to generate the error matrix 
and accuracy reports.

Kappa Coefficient

The Kappa coefficient expresses the proportionate reduction in error 
generated by a classification process compared with the error of a 
completely random classification. For example, a value of .82 implies 
that the classification process is avoiding 82 percent of the errors 
that a completely random classification generates (Congalton, 
1991).



Evaluating Classification / 290Field Guide


