
Abstract
The need for comprehensive, accurate information on land-
cover change has never been greater. While remotely sensed
imagery affords the opportunity to provide information on
land-cover change over large geographic expanses at a rela-
tively low cost, the characteristics of land-surface change
bring into question the suitability of many commonly used
methodologies. Algorithm-based methodologies to detect
change generally cannot provide the same level of accuracy as
the analyses done by human interpreters. Results from the
Land Cover Trends project, a cooperative venture that in-
cludes the U.S. Geological Survey, Environmental Protection
Agency, and National Aeronautics and Space Administration,
have shown that land-cover conversion is a relatively rare
event, occurs locally in small patches, varies geographically
and temporally, and is spectrally ambiguous. Based on
these characteristics of change and the type of information
required, manual interpretation was selected as the primary
means of detecting change in the Land Cover Trends project.
Mixtures of algorithm-based detection and manual interpreta-
tion may often prove to be the most feasible and appropriate
design for change-detection applications. Serious examina-
tion of the expected characteristics and measurability of
change must be considered during the design and implemen-
tation phase of any change analysis project.

Introduction
Land-cover and land-cover-change data are critical to under-
standing and modeling our environment. For example, global
environmental issues, such as increasing levels of greenhouse
gases and the potential resultant global warming, have been
well documented both in the general media and in scientific
circles. There have been studies linking increases in green-
house gases with continental- to regional-scale changes in
land cover (Bounoua et al., 2002), perhaps most notably
with tropical deforestation in Amazonia (Fearnside, 1996;
Fearnside and Guimaraes, 1996), but very little is known
about the cumulative effects of localized land-cover change on
climate and other global processes. Local activities, such as
timber production, urban development, agricultural practices,
and electricity generation, can all emit traces of carbon diox-
ide and other greenhouse gases that accumulate in the atmos-
phere and contribute to global climate modification. Together,
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these power plants, households, fields, and vehicles repre-
sent billions of point or small-area sources of emissions and
aerosols (Wilbanks and Kates, 1999). Accurate land-cover and
land-cover-change data at the local scale are crucial in inven-
torying these sources.

Climate modeling is only one type of research requiring
land-cover data. Land cover and land-cover change can also
have profound impacts on water quality and sedimentation
(Lowrance et al., 1985), the composition of plant and animal
communities (Ojima et al., 1994), fire regimes (Nepstad et al.,
2001), and many other processes. The challenge facing policy
makers and scientists is the general lack of comprehensive
data on the types and rates of land-use and land-cover
changes (Loveland et al., 2002).

With the launch of the first Landsat imaging satellite in
1972, large-area coverage data were available that provided a
new source of information for those performing environmen-
tal studies. Widely accessible, remotely sensed imagery pro-
vided scientists with fixed, permanent snapshots of the Earth’s
surface, making it extremely useful for performing land-cover
and land-cover-change studies. This characteristic, coupled
with the increasing availability and power of computing re-
sources, sparked great enthusiasm and optimism that finally a
cheap, reliable data source was available from which land-
cover data could be derived. Numerous analysis techniques
have since been developed to derive land-cover and land-
cover-change information. Techniques range from those rely-
ing heavily on manual interpretation to completely automated
approaches. The potential value of the latter becomes obvious
towards reaching a goal of an efficient, repeatable, and afford-
able means for monitoring the landscape. Although there is no
doubt that automated systems would be of immense value, the
question arises, have the semiautomated to automated proce-
dures developed in the last 30 years provided a successful
mechanized means for classifying and monitoring the land-
scape?

Initial attempts at semiautomated classification of land
cover involved the use of spot densitometers to try to extract
meaningful information from photographic prints. Such an
approach may seem overly simplistic and out of date today.
While digital land-cover and land-cover-change techniques
have certainly advanced since these early attempts, is it possi-
ble that we are still guilty of overexploitation of the data? Are
we expecting to extract more from the data than the data (and
algorithms) are capable of supplying?
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As application of the data has exploded, there has often
been the tendency to let the available software dictate the
choice of methodology, using the provided algorithms to
gather as much information as possible, without questioning
results or suitability of the methodology (Ryerson, 1989).
Methodologies and popular (and readily available) algorithms
have often become the “tail wagging the dog,” i.e., they have
dictated the path and focus of land-cover and land-cover-
change studies.

Figure 1 portrays the key elements to consider in the
initial phases of designing a change analysis project. The
characteristics of change, along with the interpretability of
change as defined by the elements of interpretation, should be
the driving forces in forming the design of any land-cover-
change study. While this may seem elementary, we continue
to see it overlooked in many studies. The interplay of project
design, the characteristics of change, and the interpretability
of change are what should drive the selection of technique.
The most successful projects are those that first create a clear
project concept and then select a methodology to best accom-
modate specific project goals.

What follows is a brief summary of commonly used
change-detection techniques and the elements of interpreta-
tion that make detection of change possible from remotely
sensed imagery. The majority of this paper is then dedicated

to discussing the characteristics of change using examples
from the U.S. Land Cover Trends Project (Loveland et al.,
2002) to illustrate these characteristics. We conclude by con-
sidering how all these factors can influence project design.

Change Detection Techniques
Methodologies for detecting change are based on the analysis
of changes in the elements of interpretation outlined below.
The choice of measurement variable is heavily dependent
upon project goals, because the performance of a technique
may vary widely depending upon the type of change that is
being identified or upon the geographic context. A brief dis-
cussion of the commonly used algorithm-based approaches
follows, along with a discussion of the manual interpretation
of change.

Algorithm-Based Approaches
Spectral information recorded by the remote sensing instru-
ment and products derived from the spectral data are the
most commonly used measurement variables for detecting
change. Algorithm-based approaches are especially likely to
focus on the use of spectral data and spectral variability. Some
of the most commonly used methodologies are simple image
differencing (Weismiller et al., 1977; Jensen and Toll, 1983;
Vogelmann, 1988), image ratioing (Howarth and Wickware,
1981), and principal components analysis (Byrne et al., 1980;
Johnston and Haas, 1985; Ribed and Lopez, 1995). These tech-
niques are all primarily used to generate a binary change
mask.

Post-classification comparison of multiple thematic land-
cover classifications has the advantage of creating a complete
descriptive change matrix and has been widely used (Kumar
et al., 1993; Wilcock and Cooper, 1993; Massart et al., 1995;
Dimyati et al., 1996). Change vector analysis (CVA) also has the
advantage of providing a high level of information regarding
the magnitude and nature of a surface change and has been
widely used to monitor vegetation and vegetation condition
(Lambin and Strahler, 1994; Dwyer et al., 1997; Sohl, 1999).
Other commonly used methodologies include the analysis of
trends in various vegetation indices and other spectrally
based band ratios and indices (Pickup et al., 1993; Lambin
and Ehrlich, 1997; Wang et al., 2001; Kawabata et al., 2001),
spectral mixture modeling to analyze changes in sub-pixel
land-cover modifications (Cochrane and Souza, 1998; Foschi
and Smith, 1997; Roberts et al., 1993), and fuzzy classification
systems which replace hard classifications with probability
estimates, allowing for multiple and partial class membership
(Foody and Boyd, 1999). For a more detailed discussion on
these and other algorithm-based approaches, examine the ref-
erences cited above or the numerous papers outlining com-
monly used change analysis techniques (e.g., Singh, 1989;
Mouat et al., 1993; Yuan and Elvidge, 1998; Sohl, 1999).

Algorithm-based approaches have historically used the
pixel as the basic element of measurement, with the measure-
ment itself based on spectral properties (the interpretation
elements of color/tone and brightness). Digital techniques for
incorporating the other basic elements of image interpretation
(pattern, site, association, etc.) have typically been limited in
scope and application. Object-based classification has the
ability to include additional interpretation elements beyond
spectral information alone, and such approaches have become
increasingly used in recent years with advances in desktop
computing power. Object-based approaches first attempt to
segment imagery into discrete image objects, i.e., contiguous
groups of pixels with similar properties (Figure 2). Spectral
information is only one component on which the segmenta-
tion is based, because characteristics such as shape, texture,
and neighborhood relationships are also incorporated into
the segmentation algorithm.

4 4 0 Apr i l  2004 P H OTO G R A M M E T R I C  E N G I N E E R I N G  &  R E M OT E  S E N S I N G

Figure 1. Techniques for detecting change are based on
image elements that make interpretation possible. These
elements, in turn, are based on the characteristics of
change itself. Project design is based on the characteris-
tics of change and the interpretability of that change. Tech-
nique, however, should not be a driving factor of project de-
sign. Instead, project design and the characteristics of
change should drive the choice of technique.
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Manual Interpretation of Change
Smiatek (1995) said that, while the “true” classifier does not
yet exist in the remote sensing world, visual classification of
imagery could be very accurate, implying that manual inter-
pretation provides the highest level of accuracy obtainable.
Heller and Johnson (1979), Gilmer et al. (1980) and Smiatek
(1995) used manually interpreted sample data as a source of
“correction” for wall-to-wall land-cover information derived
from semiautomated algorithms, again implying the high level
of accuracy afforded by manual interpretation versus purely
algorithm-based approaches. The manual interpretation of
imagery and aerial photography is often used to validate
results from semiautomated change procedures (Cohen et al.,
1998; Hayes and Sader, 2001). There simply is an underlying
assumption that reference data of higher quality can be devel-
oped from the manual interpretation of aerial photographs
(Dobson and Bright, 1994). Mas and Ramirez (1996) found
that the visual classification of Landsat Thematic Mapper (TM)
imagery resulted in accuracies 10 percent higher than any of
the various digital (semiautomated) methodologies that were
tested.

The human interpreter has many advantages over an
algorithm-based approach when one examines the elements
of imagery (as outlined below) that make land cover and land-
cover change interpretable. The spectral properties (tone/
color and brightness) of an image provide the principal form
of information when interpreting imagery, and algorithm-
based approaches can identify differences in tone with more
consistency and accuracy than a human interpreter. How-
ever, the complexity involved in the integration of the other
image elements restricts their use in most algorithm-based
approaches. The human interpreter can incorporate informa-
tion from all elements in a deductive image interpretation
process unmatched by any computer algorithm. The human
interpreter can also incorporate ancillary information at a
conscious or subconscious level, and, unlike automated meth-
ods which also may use ancillary data sets, can “change the
rules” regarding the use of such data as situations or contexts
change. Subjective information, such as conversations with
persons familiar with the area, observations made during field
work, or experiences with other regions similar to the study
area, may also be used in the decision-making process. Even
intuition, a truly human reaction to a situation, may be used.
Under certain circumstances, the mental processes of deduc-

tion and association may allow the analyst to identify features
not actually visible on the imagery, such as buried pipelines
or a camouflaged military airfield (Avery, 1977; Philipson,
1980). Inclusion of these factors in the interpretation process
results in an incredibly high level of deductive processing.

The human eye and mind represent an extremely sophis-
ticated remote sensing system, one that is not completely
understood, and one that is nearly impossible to mimic with
a computer-based algorithm (Estes et al., 1983). However,
although the manual interpretation of imagery remains the
primary technique for providing “truth” information for accu-
racy assessment procedures, it is used much less frequently as
the primary technique for deriving land-cover-change infor-
mation. The inherent advantages of manual interpretation
cannot be ignored, but neither can the disadvantages. Particu-
larly when land-cover and land-cover-change analyses of large
areas are being done, algorithm-based methodologies are now
much more cost effective and less time-consuming than
methodologies relying on intensive manual interpretation.
Although this paper focuses largely on thematic land-cover
conversion, we note that digital techniques are generally
superior for detecting subtle, within-class changes (changes in
condition), such as forest thinning or changes in vegetation
condition.

Interpretation Elements
The various techniques for detecting change are simply tools
that are used to detect and analyze changes in the basic ele-
ments of interpretation. The elements of interpretation are
those characteristics of land cover and land use that are repre-
sented on remotely sensed imagery and allow for the detec-
tion and analysis of land-surface change (see Figure 1).
Several sources have described the various characteristics of
imagery that allow the interpretation of land use and land
cover (e.g., Avery, 1977; Estes et al., 1983). These characteris-
tics are also the key variables that are used in the interpreta-
tion of change:

• Color/Tone—The relative responses among all spectral bands.
• Brightness—The intensity of the spectral response.
• Size—The area of a discrete surface feature.
• Shape—The geometric form of a surface feature.
• Shadow/Height—Shadow effects related to feature height and

viewing angle.
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Figure 2. Automated image segmentation, the delineation of image objects by grouping
contiguous pixels having similar properties, is an important component of human percep-
tion and the interpretation of remotely sensed imagery. Software tools that interactively
or automatically segment imagery are becoming increasingly common.
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• Texture—The roughness or smoothness of an image feature,
created by tonal repetitions within that feature.

• Pattern—Arrangement and repetition of surface features.
• Site—Geographic location or setting of a surface feature.
• Association—Spatial relationship of different surface features.

The order of the elements listed above provides a rough hier-
archy of the complexity of interpretation involved in their
use. The higher-level elements often require the integration
of information from the lower-level elements. Of the afore-
mentioned characteristics, color/tone generally conveys more
information to the interpreter than any other element (Estes
et al., 1983). Most algorithm-based approaches for change de-
tection rely on the detection and/or interpretation of changes
in color/tone (spectral response). However, critical informa-
tion, especially information on the nature of land-surface
change, can be obtained by the proper use of the other basic
elements of image interpretation (see Estes et al. (1983) for an
excellent discussion of the elements of image interpretation
and the exploitation of each).

Characteristics of Change (With Examples from the 
U.S. Land Cover Trends Project)
The effective use of remote sensing as a tool for generating
land-cover information is highly dependent on the measur-
able quality of this information (Congalton and Green, 1999).
All too often, applications research in remote sensing has
been driven neither by the practical information needs of a
user nor by a basic investigation of the information content of
an image (Ryerson, 1989). To better select a technique to ana-
lyze land-cover change from remotely sensed imagery, it is
necessary to understand the characteristics of change itself. 

The Land Cover Trends project, a U.S. Geological Survey
(USGS), Environmental Protection Agency (EPA), and National
Aeronautics and Space Administration (NASA) effort, is inves-
tigating methodologies to estimate the temporal and spatial
characteristics of contemporary land-cover change in the
United States (Loveland et al., 2002). The national scope of
this project offers many examples of the characteristics of
change across diverse landscapes and provides an
opportunity to illustrate how these characteristics have influ-
enced the overall project design. Estimates of change are being
compiled on an ecoregion basis (Omernik, 1987) using a
geospatial sampling approach and Landsat imagery. Random
sets of square sample sites, either 20 km or 10 km on a side,
are selected for each ecoregion. Land-cover data are inter-
preted for five imagery dates from 1973 to 2000 using Landsat
Multispectral Scanner (MSS), Landsat Thematic Mapper (TM),
and Landsat Enhanced Thematic Mapper (ETM�) data. Land-
cover-change statistics are derived from interpreted land-
cover data (60-meter minimum mapping unit) for each date. A
complete description of project methodology and results for
several ecoregions is provided in Loveland et al. (2002).

The Land Cover Trends project provides estimates of
land-cover conversion based on a thematic classification sys-
tem (see Table 1) roughly analogous to the Level 1 classifica-
tion outlined by Anderson et al. (1976). Estimates are not
currently provided for within-class changes in condition (e.g.,
changes in forest greenness levels) or for any continuous land-
scape variable. Methodologies, data sources, and other key
components of project design often are quite different be-
tween studies focusing on thematic changes and studies ad-
dressing changes in continuous variables. The characteristics
of change described in this paper refer primarily to thematic
land-cover change (full land-cover conversion), although
many may hold true for within-class changes in condition.
While the Land Cover Trends project is not yet complete, it
has provided information on the characteristics of thematic
land-cover and land-use conversion for a large part of the

eastern United States. With the number and variety of ecore-
gions that have already been studied, an understanding of the
following general characteristics of contemporary land-cover
change has been reinforced. With each individual characteris-
tic of land-surface change, we note potential effects on general
project design and provide specific examples regarding effects
on the Land Cover Trends project.

Change Is a (Relatively) Rare Event
Full land-cover conversion usually covers little ground rela-
tive to the total study area. The Land Cover Trends project
examines change for 6- to 8-year intervals. The percentage of
land that thematically changes during each interval is gener-
ally quite small (see table in upper-left of Plate 1), with a
median change per interval of only 3.1 percent. Rates of
change have so far been recorded at as little as 0.4 percent
(for the 1973–1980 time period in the Blue Ridge Mountains
ecoregion) and as high as 10.7 percent (for the 1992–2000
time period in the Southeastern Plains ecoregion). So, land-
cover change nearly always covers a relatively small percent-
age of the overall study area.

The relative rarity of full land-cover and land-use conver-
sion has important implications in the choice of methodolo-
gies. Consider that, for a single-date land-cover classification
based on remotely sensed imagery, an overall accuracy of
85 percent is often considered to be a “successful” classifica-
tion. Potential accuracy of a change product computed from
two land-cover products is the product of the accuracies of
the two individual products, or roughly 72 percent (for two
products with an 85 percent accuracy level). For the Land
Cover Trends Project, even in a very dynamic ecoregion such
as the Southeastern Plains where overall change can surpass
10 percent per time interval, direct comparison of indepen-
dently produced land-cover classifications with such accuracy
levels will result in errors of commission exceeding the actual
amount of change itself. Because of the relative rarity of
change, high accuracies must be maintained to obtain confi-
dent estimates of real change, regardless of the choice of
methodology.

In order to achieve the highest accuracies possible, the
Land Cover Trends project opted for a manual interpretation
process to identify and record land-surface changes. For a
description of the interpretation process, see Loveland et al.
(2002). Every change reported for a sample block is assured of
being manually identified, delineated, and analyzed, virtually
eliminating the large errors of commission that can result
from algorithm-based approaches. Similarly, true thematic
land-cover changes that exhibit only minor spectral change
can be accurately identified with the manual interpretation
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TABLE 1. BECAUSE ENVIRONMENTAL ISSUES ARE COMMONLY ASSOCIATED WITH
LAND CHANGING FROM ONE GENERAL TYPE TO ANOTHER, THE U.S. LAND COVER
TRENDS PROJECT MAPPING LEGEND CONSISTS OF 11 GENERAL LAND-COVER AND
LAND-USE TYPES BASED ON THE U.S. GEOLOGICAL SURVEY SYSTEM (ANDERSON

ET AL., 1976). FOR A MORE COMPLETE LEGEND DESCRIPTION, 
SEE LOVELAND ET AL. (2002)

Thematic Classes

Water Bodies
Developed (Urban and Built Up)
Mechanically Disturbed
Non-mechanically Disturbed
Natural Barren
Mines and Quarries
Forests and Woodlands
Grassland/Shrubs
Agriculture
Wetlands
Snow and Ice
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process, reducing the chances for errors of omission that
might occur with the use of algorithms based on spectral
response.

Change Occurs Locally and in Small Patches 
Land-use and land-cover change is generally a local event,
with relatively small patches of contiguous land affected by
complete land-cover conversion at any one time. Patch size
can be a function of time, because longer intervals between
image dates allow more opportunity for change to occur, along
with the associated coalescence of individual changed
patches into larger patches. Typically, however, individual,
distinct land-cover conversions occur locally and over rela-
tively small areas. Table 2 shows the average patch size for
various land-cover transition types for six ecoregions from the
Land Cover Trends project. Although certain land-cover tran-
sitions exhibit larger average patch sizes (such as forest to
clear-cut and forest to mining), patch sizes of most land-cover
transitions average around 4 hectares for the ecoregions in
this study. With a minimum mapping unit of 60-meter pixels,
that corresponds to an average patch size of approximately
11 pixels.

Relatively coarse-scale imagery, such as the Advanced
Very High Resolution Radiometer (AVHRR) (1-km pixels) and
the Moderate Resolution Imaging Spectroradiometer (MODIS)
(250-m pixels), may have limited value for many land-cover
change investigations focusing on thematic conversion.
Although these sensors can be quite useful for analyzing
changes in continuous land-surface variables (such as regional
changes in “greenness”), the scale of thematic land-cover
change is often much finer than the detectors can resolve.
Detecting thematic change can be a challenge even with the
higher resolution satellite sensors, such as TM (30-m pixels)
and MSS (80-m pixels). As a result, the Land Cover Trends
project relies heavily on historical high-resolution aerial
photographs to aid in the interpretation of Landsat data.

Change Is Geographically Variable 
The spatial distribution of change can have important impli-
cations for project design. There has been a tendency for
many land-cover and land-cover-change studies to use politi-
cal delineations as the defining boundaries for study areas or
to stratify study areas (Turner, 1990; Vogelmann et al., 1998;
Sohl, 1999). However, the distribution and characteristics of
land cover and land-cover change are not necessarily strongly
correlated with political units. More meaningful stratification
can often be obtained by defining strata that relate to envi-
ronmental and anthropogenic characteristics that affect land
cover and land use. This is especially true if a sampling
approach is being used, as with the Land Cover Trends pro-
ject. Precision of change estimates in a sampling framework is
directly related to the spatial variability of change within the
study unit. The Land Cover Trends project selected ecoregions
as a spatial stratifier because they were derived from a synop-
tic assessment of climate, landform, geology, soils, vegetation,
hydrology, and land-use characteristics (Omernik, 1995), the

integration of which should be reflected by patterns in land
cover and land-cover change. Empirical evidence indicates
strong relationships between ecoregions and land-cover pat-
terns (Loveland et al., 2002), suggesting that use of ecoregions
as a sampling framework should reduce variability among the
sampling strata. This should result in more precise estimates
of change than would be obtained using sampling strata such
as states or other political units.

As Plate 1 shows, the frequency of change varies substan-
tially among ecoregions.  Similarly, the sectoral pattern of
change can vary substantially among ecoregions, with some
ecoregions showing cycles of timber harvest and forest regen-
eration as the primary transition type (Southeastern Plains
and Middle Atlantic Coastal Plain), while others show urban-
ization (Pine Barrens or Northern Piedmont) or expansion of
mining lands (Central Appalachians) as the primary transition
type. Rates and types of change exhibit obvious spatial vari-
ability, even among adjacent ecoregions (note the Piedmont
ecoregion as compared to the adjacent Blue Ridge Mountains
ecoregion). Land-cover and land-use change has a geographic
context, a context which changes from region to region and
which strongly affects the form(s) of change that occur. 

Geographic variability also has implications on the trans-
port of a methodology from one study area to another. The dif-
ficulty in many algorithm-based, semiautomated approaches
lies in the consistent use of multi-date imagery when the con-
text is continuously changing. Even the detection of the same
type of land-surface change may be enhanced or hindered
based on the geographic context in which that change is
found. Consider the detection of urban development in a
largely forested environment versus an arid one. Simple
Normalized Difference Vegetation Index (NDVI) differencing
(Yuan and Elvidge, 1998; Sohl, 1999) may work very well to
detect change where forest land is cut for a residential devel-
opment, but would be quite useless to detect a new residential
development created in a dry sandy location. Geographic con-
text matters, and can strongly affect the utility and effective-
ness of a given change-detection methodology. While the cre-
ation of a “generic” land-cover change-detection algorithm
that works in a variety of settings would be highly desirable, it
often simply isn’t feasible.

Change Cycles Are Temporally Variable
As well as varying spatially, different forms of land-cover/
land-use conversion occur at different temporal scales. The
inset chart in Plate 1 shows how overall change for nine east-
ern ecoregions varies considerably over four time intervals,
with a general increase in the rate of change over time for
most ecoregions. Choice of temporal resolution is a key com-
ponent of project design and can strongly affect results. 

A key difficulty with the detection of land-surface change
is the proper detection and reporting of cyclic change. Unidi-
rectional land-cover transitions, such as the conversion of an
agricultural field or patch of forest to a developed (urban) use,
are less problematic, because the transition can occur at any
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TABLE 2. AVERAGE PATCH SIZE (HECTARES) FOR VARIOUS COMMON LAND-COVER TRANSITIONS, BY ECOREGION

Forest to Forest to Forest to Forest to Agriculture to Agriculture to Agriculture Agriculture 
Ecoregion Developed Disturbed Mining Agriculture Developed Disturbed to Mining to Forest

Piedmont 3.5 16.6 5.5 2.9 4.8 4.3 6.6 2.8
North Central Appalachians 0.9 8.4 6.9 2.3 1.6 3.0 5.9 3.0
Middle Atlantic Coastal Plain 4.9 14.6 13.6 9.0 6.7 6.9 2.7 7.4
Northern Piedmont 2.7 10.4 3.5 1.7 5.1 6.1 5.1 2.4
Southeastern Plains 2.2 13.2 6.9 2.7 1.5 3.3 8.0 3.9
Blue Ridge Mountains 3.5 11.2 4.9 3.8 4.8 5.3 0.6 5.4
Overall Averages 3.0 12.4 6.9 3.7 4.1 4.8 4.8 4.1
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point between target dates. However, cyclic changes, such as
the timber-harvest/forest-regeneration cycle, may be undertab-
ulated if target date extremes are too wide. For example, the
managed slash pine and loblolly pine plantations in much of
the Southeastern Plains ecoregion have optimum cutting and
regeneration cycles as short as 21 years (Bailey, 1986). The
potential to underestimate change certainly exists if target
date extremes are longer than 20 years, but it also exists for
intervals much shorter than 20 years because the rapid revege-

tation of cleared forest lands in the southeast often makes
identification of cleared patches difficult just a few years fol-
lowing clearing (Figure 3). Conversely, the optimum cutting
and regeneration cycle for forests of the Oregon Coast Range is
140 years (CRA, 2003), so longer change-detection intervals
for harvest cycles may be selected for that region. While the
selection of wide temporal intervals may result in an underes-
timation of cyclic change and may mask distinct trends, the
selection of short temporal intervals could potentially result

4 4 4 Apr i l  2004 P H OTO G R A M M E T R I C  E N G I N E E R I N G  &  R E M OT E  S E N S I N G

Plate 1. Characteristics of change for selected ecoregions in the eastern United States. Ecoregion shad-
ing, along with information in the inset graph, illustrates how overall change varies spatially and tempo-
rally. The exploded pie charts show how change varies sectorally among ecoregions.
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Plate 2. Change-vector analysis for 1992 and 2000 Landsat data for a 20-km sample block in the South-
eastern Plains ecoregion. Changes are depicted both by magnitude and by direction in the brightness/
greenness plane (see color wheel at lower left). Changes shown by the six points all represent modifica-
tions in land cover, not in land use (forest or agriculture). In complex landscapes such as this, similar land-
cover transformations (conifer to clear-cut) can have vastly different spectral changes (see magnitude value,
points 1, 2, and 3). Different types of land-cover transformations (forest or agricultural transformations
above) can have very similar spectral changes in both direction and magnitude (see points 2 and 4, also
points 5 and 6).

in an unnecessary and inefficient repetition of mapping effort.
Consideration of the temporal characteristics of change is
important when selecting temporal windows because the
optimum window varies by transition type and region.

Change Is Spectrally Ambiguous 
Landsat and Landsat-scale images have a very coarse spatial
resolution compared to aerial photographs, the most widely
used form of remotely sensed data before the introduction
and widespread use of satellite imagery. As a result, of the
elements commonly used to interpret imagery (color/tone,
brightness, size, shape, shadow, texture, pattern, site, and as-
sociation), only color and brightness are commonly used for
most land-cover and land-cover-change mapping applications

(Ryerson, 1989). For single-date land-cover mapping, the in-
herent assumption is that a direct correlation exists between a
land-cover type and a unique spectral signature. It follows
that, for change analyses, differences in spectral properties
between dates imply a change in land cover and land use.

Although changes in spectral response between two dates
of calibrated imagery generally do indicate some form of sur-
face change, the transformation often is not a defined thematic
conversion.  Our desire to classify phenomena does not neces-
sarily mean those phenomena can be sorted cleanly into cate-
gories. There are both conceptual and spectral reasons why
this may be problematic. First, we are discretely partitioning a
variable (land cover or land use) that is often better defined in
terms of a continuum. Second, commonly used classification
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systems are often hybrids of land-use and land-cover types.
As a result, status as a recorded “change” may differ between
classes, with only full land-use conversions designated as
“change” for some classes, and subtler alterations in cover
(or condition) being considered as “change” for others.

Consider the classification system used for the Land
Cover Trends project (Table 1). All land covers associated with
agriculture are classified under one thematic label that serves
as a surrogate for land use, “agriculture.” For example, fallow
(bare) fields and planted fields both still meet the thematic
criteria for “agriculture” or “cropland,” yet as different cover
types, their spectral responses are vastly different. For land
uses associated with forests, two forms of potential land
cover, “forest” (class 6) and “mechanically disturbed” (class 3,
primarily clear-cut forest), are defined in the classification
system. As the change vector analysis in Plate 2 shows, trans-
formations from forest to clear-cut, a thematic change in the
classification system, can be spectrally very similar to changes
from a planted green field to a fallow field, a land-cover trans-
formation not considered a thematic change in the classifica-
tion system (because agriculture is classified by land use,
rather than cover). A similar spectral relationship exists for
the reverse case, clear-cuts regenerating to forest or fallow
fields changing to planted fields. It is also often the case that
true, thematically defined surface change has a very small or
undetectable spectral change, as with the transition of barren
agricultural fields to a low-density developed (urban) land
use. The use of spectral information alone often cannot ade-
quately distinguish between “change” and “no change” in
many thematic classification systems. Even should a particu-
lar methodology correctly identify a changed patch of land, it
is highly questionable whether the methodology could consis-
tently and accurately provide information on the type of land-
cover conversion that had occurred, given the similarity be-
tween different land-cover transformations on Plate 2.

Additional difficulties with using spectral data without
supporting information are connected to image-related factors
causing “false-positive” indications of change. Atmospheric
effects are a source of difficulty for many change-analyses

applications, because varying atmospheric conditions be-
tween dates will result in varying spectral signatures from
even a completely unchanged land surface area. Similarly,
factors such as changes in sun angles, Earth-Sun distances,
and detector miscalibration can all result in spectral differ-
ences between image pairs. A prerequisite preprocessing step
for many change-analysis techniques is thus to calibrate the
images to a common radiometric reference using a variety of
methods (Schott et al., 1988; Caselles and Garcia, 1989; Hall
et al., 1991; Elvidge et al., 1995). Such calibration techniques
can compensate for several factors (at the cost of additional
labor, cost, and time), but perhaps an even greater source of
potential error lies with seasonal and climatological effects on
spectral response. Most land-cover change applications strive
to obtain “anniversary-date” imagery to minimize changes in
spectral response due to seasonality issues. Unavailability of
data because of cloud cover or other issues often makes this
goal logistically unrealistic. Even if it were possible to consis-
tently obtain perfect anniversary-date imagery, seasonal varia-
tion in weather patterns can still have a significant impact on
spectral variation from year to year.  The Land Cover Trends
project avoids problems of image calibration by relying almost
exclusively on manual interpretation. Although the project
uses data from multiple sensors (MSS, TM, and ETM+), manual
interpretation easily allows for the use of completely different
sensors for temporal endpoints, something that would be
extremely difficult to do with many algorithm-based
approaches. 

Implications for Project Design
Philipson (1986) stated that the widespread availability of
microcomputers did not decrease the need for a human inter-
preter. The same can be said for change analysis studies con-
ducted in the present day. When image interpreters require
high levels of classification accuracy, such as for testing the
accuracy of classification results, they rely on manual meth-
ods of interpretation. This is a particularly pertinent consider-
ation for detecting thematic land-cover and land-use change,
because results from the Land Cover Trends project have
demonstrated that the characteristics of thematic change can
make the use of algorithm-based approaches problematic.
While manual interpretation may provide the greatest level of
thematic classification accuracy, we recognize that it is also
the most costly and time-consuming method. Algorithm-based
approaches are generally more cost-effective and fast, but
accuracy suffers, as can the ability to analyze types of change.
For non-thematic classification variables, algorithm-based
approaches may excel in detecting changes in land-cover
condition.

Although each method may prove useful in different
situations, the potential definitely exists to integrate both
algorithm-based approaches and manual interpretation. For
example, algorithm-based approaches excel at identifying
areas of spectral change. Not all spectral change represents
actual thematic change, but an algorithm-based approach can
efficiently provide a “first-cut” change product that identifies
areas of potential change. Manual interpretation can then be
used to fine-tune the initial product. Gluch (2002) used such
an approach to map urban growth near Salt Lake City. Sohl
(1999) advocated the use of a hybrid approach, using a combi-
nation of simple image differencing and manual delineation
of masks to map change in the United Arab Emirates. Wood-
cock et al. (2001) stated that a manual post-classification edit-
ing step is necessary for virtually all maps made with re-
motely sensed data, and they used such an approach for
monitoring forest change in Oregon. Hybrid methodologies
using both algorithm-based approaches and manual interpre-
tation have the potential to improve the accuracy of many
projects that previously relied solely on automated methods.
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Figure 3. The four highlighted areas represent selected for-
est stands that were clear-cut prior to the 1991 TM date in
a portion of the Southeastern Plains ecoregion. Note that,
by the 2000 ETM+ date, cleared lands have revegetated
and are virtually indistinguishable from other forest lands.
Rapid revegetation of cleared forest lands in the South-
eastern Plains and other ecoregions of the southeastern
United States can result in an under-representation of the
clear-cut/regeneration cycle if temporal endpoints of a
change study are too wide. The Land Cover Trends project
has chosen a temporal interval of 6 to 8 years to ensure
adequate capture of such cyclic change.
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Based on the characteristics of land-surface change as re-
vealed by the Trends project, we strongly recommend the use
of manual interpretation to “clean up” change products cre-
ated from algorithm-based approaches.

Regardless of project goals, the “best” approach for ana-
lyzing remotely sensed data should be determined within the
context of the project goals, the available resources, and the
available or acquirable data (Philipson, 1980). The Land Cover
Trends project demonstrated that the context and characteris-
tics of change vary by ecoregion. Consequently, there is no
single methodology that can be automated and universally ap-
plied to all geographic regions or to all types of change analy-
ses. Change is a moving target; the process of project design
should begin with a proper appreciation of the characteristics
of land-surface change within the context of the study, an un-
derstanding of the image elements that make land-surface
change interpretable, and a familiarity with the tools through
which land-surface change information can be extracted from
imagery. For large-area studies, such as the Land Cover Trends
project, geographic stratification prior to change analysis may
significantly improve interpretation efficiencies and accura-
cies. Additionally, because various types of change occur with
different temporal frequencies in different regions, selection
of time intervals for change detection can affect perceived
local dynamics. Those performing land-cover and land-use
change studies should look beyond the software and algo-
rithms currently residing on their computers and base project
design (and choice of methodology) on project goals, geo-
graphic context, and the characteristics and interpretability
of the targeted change variables. 
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