Python Geospatial
Development

Build a complete and sophisticated mapping application from
scratch using Python tools for GIS development

PACKT

Python Geospatial Development

Build a complete and sophisticated mapping application
from scratch using Python tools for GIS development

Erik Westra

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Geospatial Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010
Production Reference: 1071210

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849511-54-4
www . packtpub.com

Cover Image by Asher Wishkerman (a.wishkermanempic.de)

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Credits

Author Editorial Team Leader
Erik Westra Mithun Sehgal
Reviewers Project Team Leader
Tomi Juhola Priya Mukherji
Silas Toms

Project Coordinator

Acquisition Editor Jovita Pinto
Steven Wilding

Proofreader
Development Editor Jonathan Todd
Hyacintha D'Souza)
Graphics
Technical Editor Nilesh R. Mohite
Kartikey Pandey))
Production Coordinator
Indexers Kruthika Bangera

Hemangini Bari
Cover Work

Tejal Daruwale Kruthika Bangera

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

About the Author

Erik Westra has been a professional software developer for over 25 years, and

has worked almost exclusively in Python for the past decade. Erik's early interest

in graphical user-interface design led to the development of one of the most
advanced urgent courier dispatch systems used by messenger and courier companies
worldwide. In recent years, Erik has been involved in the design and implementation
of systems matching seekers and providers of goods and services across a range of
geographical areas. This work has included the creation of real-time geocoders and
map-based views of constantly changing data. Erik is based in New Zealand, and
works for companies worldwide.

"For Ruth,

The love of my life."

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

About the Reviewers

Tomi Juhola is a software development professional from Finland. He has a wide
range of development experience from embedded systems to modern distributed
enterprise systems in various roles, such as tester, developer, consultant, and trainer.

Currently, he works in a company called Lindorff and shares this time between
development lead duties and helping other projects to adopt Scrum and

agile methodologies. He likes to spend his free time with new and interesting
development languages and frameworks.

Silas Toms is a GIS Analyst for ICF International, working at the San Francisco and
San Jose offices. His undergraduate degree is in Geography (from Humboldt State
University), and he is currently finishing a thesis for an MS in GIS at San Francisco
State University. He has been a GIS professional for four years, working with many
local and regional governments before taking his current position. Python experience
was gained through classes at SFSU and professional experience. This is the first
book he has helped review.

I would like to thank everyone at Packt Publishing for allowing

me to help review this book and putting up with my ever-shifting
schedule. I would also like to thank my family for being supportive
in my quest to master this somewhat esoteric field, and for never
asking if I am going to teach with this degree.

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www. Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

@ PACKT! i1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read, and search across Packt's entire library of

books.

[PUBLISHING]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

Preface 1
Chapter 1: Geo-Spatial Development Using Python 7
Python 7
Geo-spatial development 9
Applications of geo-spatial development 11
Analyzing geo-spatial data 12
Visualizing geo-spatial data 13
Creating a geo-spatial mash-up 16
Recent developments 17
Summary 19
Chapter 2: GIS 21
Core GIS concepts 21
Location 22
Distance 25
Units 27
Projections 28
Cylindrical projections 29
Conic projections 31
Azimuthal projections 31

The nature of map projections 32
Coordinate systems 32
Datums 35
Shapes 36
GIS data formats 37
Working with GIS data manually 39
Summary 46

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

Chapter 3: Python Libraries for Geo-Spatial Development 47
Reading and writing geo-spatial data 47
GDAL/OGR 48
GDAL design 48
GDAL example code 50
OGR design 51
OGR example code 52
Documentation 53
Availability 53
Dealing with projections 54
pYproj o4
Design 54
Proj 55
Geod 56
Example code o7
Documentation 58
Availability 58
Analyzing and manipulating geo-spatial data 59
Shapely 59
Design 60
Example code 61
Documentation 62
Availability 62
Visualizing geo-spatial data 63
Mapnik 63
Design 64
Example code 66
Documentation 67
Availability 68
Summary 68
Chapter 4: Sources of Geo-Spatial Data 71
Sources of geo-spatial data in vector format 72
OpenStreetMap 72
Data format 73
Obtaining and using OpenStreetMap data 74
TIGER 76
Data format 7
Obtaining and using TIGER data 78
Digital Chart of the World 79
Data format 80
Available layers 80
Obtaining and using DCW data 80

Lii]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

GSHHS 82
Data format 83
Obtaining the GSHHS database 84

World Borders Dataset 84
Data format 85
Obtaining the World Borders Dataset 85

Sources of geo-spatial data in raster format 85

Landsat 86
Data format 86
Obtaining Landsat imagery 87

GLOBE 90
Data format 90
Obtaining and using GLOBE data 91

National Elevation Dataset 92
Data format 92
Obtaining and using NED data 93

Sources of other types of geo-spatial data 94

GEOnet Names Server 94
Data format 95
Obtaining and using GEOnet Names Server data 95

GNIS 96
Data format 97
Obtaining and using GNIS data 97

Summary 98
Chapter 5: Working with Geo-Spatial Data in Python 101
Prerequisites 101
Reading and writing geo-spatial data 102

Task: Calculate the bounding box for each country in the world 102

Task: Save the country bounding boxes into a Shapefile 104

Task: Analyze height data using a digital elevation map 108

Changing datums and projections 115

Task: Change projections to combine Shapefiles using geographic

and UTM coordinates 115

Task: Change datums to allow older and newer TIGER data

to be combined 119

Representing and storing geo-spatial data 122
Task: Calculate the border between Thailand and Myanmar 123
Task: Save geometries into a text file 126

Working with Shapely geometries 127
Task: Identify parks in or near urban areas 128

Converting and standardizing units of geometry and distance 132
Task: Calculate the length of the Thai-Myanmar border 133
Task: Find a point 132.7 kilometers west of Soshone, California 139

[iii]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

Exercises 141
Summary 143
Chapter 6: GIS in the Database 145
Spatially-enabled databases 145
Spatial indexes 146
Open source spatially-enabled databases 149
MySQL 149
PostGIS 152
Installing and configuring PostGIS 152
Using PostGIS 155
Documentation 157
Advanced PostGIS features 157
SpatialLite 158
Installing SpatiaLite 158
Installing pysqlite 159
Accessing SpatiaLite from Python 160
Documentation 160
Using SpatiaLite 161
SpatialLite capabilities 163
Commercial spatially-enabled databases 164
Oracle 164
MS SQL Server 165
Recommended best practices 165
Use the database to keep track of spatial references 166
Use the appropriate spatial reference for your data 168
Option 1: Use a database that supports geographies 169
Option 2: Transform features as required 169
Option 3: Transform features from the outset 169
When to use unprojected coordinates 170
Avoid on-the-fly transformations within a query 170
Don't create geometries within a query 171
Use spatial indexes appropriately 172
Know the limits of your database's query optimizer 173
MySQL 174
PostGIS 175
SpatialLite 177
Working with geo-spatial databases
using Python 178
Prerequisites 179
Working with MySQL 179
Working with PostGIS 182
Working with SpatiaL.ite 184
Speed comparisons 188
Summary 189

[iv]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

Chapter 7: Working with Spatial Data 191
About DISTAL 191
Designing and building the database 195
Downloading the data 199

World Borders Dataset 200
GSHHS 200
Geonames 200
GEOnet Names Server 200
Importing the data 201
World Borders Dataset 201
GSHHS 203
US placename data 205
Worldwide placename data 208
Implementing the DISTAL application 210
The "Select Country" script 212
The "Select Area" script 214
Calculating the bounding box 215
Calculating the map's dimensions 216
Setting up the datasource 218
Rendering the map image 220
The "Show Results" script 223
Identifying the clicked-on point 223
Identifying features by distance 225
Displaying the results 233
Application review and improvements 235
Usability 236
Quality 237
Placename issues 237
Lat/Long coordinate problems 238
Performance 239
Finding the problem 240
Improving performance 242
Calculating the tiled shorelines 244
Using the tiled shorelines 250
Analyzing the performance improvement 252
Further performance improvements 252
Scalability 253
Summary 257

Chapter 8: Using Python and Mapnik to Generate Maps 259
Introducing Mapnik 260
Creating an example map 265
Mapnik in depth 269

Data sources 269
Shapefile 270

[v]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

PostGIS 270
GDAL 272
OGR 273
SQLite 274
OsSM 275
PointDatasource 276
Rules, filters, and styles 277
Filters 277
Scale denominators 279
"Else" rules 280
Symbolizers 281
Drawing lines 281
Drawing polygons 287
Drawing labels 289
Drawing points 208
Drawing raster images 301
Using colors 303
Maps and layers 304
Map attributes and methods 305
Layer attributes and methods 306
Map rendering 307
MapGenerator revisited 309
The MapGenerator's interface 309
Creating the main map layer 310
Displaying points on the map 312
Rendering the map 313
What the map generator teaches us 313
Map definition files 314
Summary 317
Chapter 9: Web Frameworks for Python Geo-Spatial
Development 321
Web application concepts 322
Web application architecture 322
A bare-bones approach 322
Web application stacks 323
Web application frameworks 324
Web services 325
Map rendering 327
Tile caching 327
Web servers 330
User interface libraries 331
The "slippy map" stack 332
The geo-spatial web application stack 334

[vil

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

Protocols 334
The Web Map Service (WMS) protocol 334
WMS-C 337
The Web Feature Service (WFS) protocol 337
The TMS (Tile Map Service) protocol 339
Tools 344
Tile caching 344
TileCache 345
mod_tile 346
TileLite 347
User interface libraries 347
OpenLayers 348
Mapiator 351
Web application frameworks 353
GeoDjango 353
MapFish 356
TurboGears 357
Summary 359
Chapter 10: Putting it All Together: A Complete
Mapping Application 363
About the ShapeEditor 363
Designing the application 367
Importing a Shapefile 367
Selecting a feature 369
Editing a feature 370
Exporting a Shapefile 371
Prerequisites 371
The structure of a Django application 372
Models 374
Views 374
Templates 377
Setting up the database 379
Setting up the GeoDjango project 380
Setting up the ShapeEditor application 382
Defining the data models 383
Shapefile 383
Attribute 384
Feature 384
AttributeValue 385
The models.py file 385
Playing with the admin system 388
Summary 395

[vii]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Table of Contents

Chapter 11: ShapeEditor: Implementing List View,

Import, and Export 397
Implementing the "List Shapefiles" view 397
Importing Shapefiles 401

The "import shapefile" form 402
Extracting the uploaded Shapefile 405
Importing the Shapefile's contents 408
Open the Shapefile 408
Add the Shapefile object to the database 409
Define the Shapefile's attributes 410
Store the Shapefile's features 411
Store the Shapefile's attributes 413
Cleaning up 416
Exporting Shapefiles 417
Define the OGR Shapefile 418
Saving the features into the Shapefile 419
Saving the attributes into the Shapefile 420
Compressing the Shapefile 422
Deleting temporary files 422
Returning the ZIP archive to the user 423
Summary 424

Chapter 12: ShapeEditor: Selecting and Editing Features 425

Selecting a feature to edit 426

Implementing the Tile Map Server 426
Setting up the base map 435

Tile rendering 437
Using OpenLayers to display the map 442
Intercepting mouse clicks 447
Implementing the "find feature" view 451
Editing features 457
Adding features 464
Deleting features 467
Deleting Shapefiles 468
Using ShapeEditor 470
Further improvements and enhancements 470
Summary 471
Index 473

[viii]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Preface

Open Source GIS (Geographic Information Systems) is a growing area with

the explosion of Google Maps-based websites and spatially-aware devices and
applications. The GIS market is growing rapidly, and as a Python developer you
can't afford to be left behind. In today's location-aware world, all commercial Python
developers can benefit from an understanding of GIS concepts and development
techniques.

Working with geo-spatial data can get complicated because you are dealing with
mathematical models of the Earth's surface. Since Python is a powerful programming
language with high-level toolkits, it is well-suited to GIS development. This book
will familiarize you with the Python tools required for geo-spatial development. It
introduces GIS at the basic level with a clear, detailed walkthrough of the key GIS
concepts such as location, distance, units, projections, datums, and GIS data formats.
We then examine a number of Python libraries and combine these with geo-spatial
data to accomplish a variety of tasks. The book provides an in-depth look at the
concept of storing spatial data in a database and how you can use spatial databases
as tools to solve a variety of geo-spatial problems.

It goes into the details of generating maps using the Mapnik map-rendering
toolkit, and helps you to build a sophisticated web-based geo-spatial map editing
application using GeoDjango, Mapnik, and PostGIS. By the end of the book, you
will be able to integrate spatial features into your applications and build a complete
mapping application from scratch.

This book is a hands-on tutorial, teaching you how to access, manipulate,
and display geo-spatial data efficiently using a range of Python tools for GIS
development.

[PUBLISHING]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

Preface

What this book covers

Chapter 1, Geo-Spatial Development Using Python, introduces the Python programming
language and the main concepts behind geo-spatial development

Chapter 2, GIS, discusses many of the core concepts that underlie GIS development.
It examines the common GIS data formats, and gets our hands dirty exploring U.S.
state maps downloaded from the U.S. Census Bureau website

Chapter 3, Python Libraries for Geo-Spatial Development, looks at a number of important
libraries for developing geo-spatial applications using Python

Chapter 4, Sources of Geo-Spatial Data, covers a number of sources of freely-available
geo-spatial data. It helps you to obtain map data, images, elevations, and place
names for use in your geo-spatial applications

Chapter 5, Working with Geo-Spatial Data in Python, deals with various techniques
for using OGR, GDAL, Shapely, and pyproj within Python programs to solve
real-world problems

Chapter 6, GIS in the Database, takes an in-depth look at the concept of storing spatial
data in a database, and examines three of the principal open source spatial databases

Chapter 7, Working with Spatial Data, guides us to implement, test, and make
improvements to a simple web-based application named DISTAL. This application
displays shorelines, towns, and lakes within a given radius of a starting point. We
will use this application as the impetus for exploring a number of important concepts
within geo-spatial application development

Chapter 8, Using Python and Mapnik to Generate Maps, helps us to explore the Mapnik
map-generation toolkit in depth

Chapter 9, Web Frameworks for Python Geo-Spatial Development, discusses the geo-spatial
web development landscape, examining the major concepts behind geo-spatial web
application development, some of the main open protocols used by geo-spatial web
applications, and a number of Python-based tools for implementing geo-spatial
applications that run over the Internet

Chapter 10, Putting it all Together: a Complete Mapping Application, along with the
final two chapters, brings together all the topics discussed in previous chapters to
implement a sophisticated web-based mapping application called ShapeEditor

Chapter 11, ShapeEditor: Implementing List View, Import, and Export, continues with
implementation of the ShapeEditor by adding a "list" view showing the imported
Shapefiles, along with the ability to import and export Shapefiles

[2]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Preface

Chapter 12, ShapeEditor: Selecting and Editing Features, adds map-based editing and
feature selection capabilities, completing the implementation of the ShapeEditor
application

What you need for this book

To follow through the various examples, you will need to download and install the
following software:

Python version 2.x (minimum version 2.5)
GDAL/OGR version 1.7.1 or later
GEOS version 3.2.2 or later
Shapely version 1.2 or later

Proj version 4.7 or later

pyproj version 1.8.6 or later
MySQL version 5.1 or later
MySQLdDb version 1.2 or later
SpatiaLite version 2.3 or later
pysqglite version 2.6 or later
PostgreSQL version 8.4 or later
PostGIS version 1.5.1 or later
psycopg2 version 2.2.1 or later
Mapnik version 0.7.1 or later

Django version 1.2 or later

With the exception of Python itself, the procedure for downloading, installing, and
using all of these tools is covered in the relevant chapters of this book.

Who this book is for

This book is useful for Python developers who want to get up to speed with open
source GIS in order to build GIS applications or integrate geo-spatial features into
their applications.

[31]

2635 State Street, Apt T1, Santa Barbara, 93105

[] This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
PUBLISHING

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can then convert these to Shapely
geometric objects using the shapely.wkt module."

A block of code is set as follows:

import osgeo.ogr

shapefile = osgeo.ogr.Open ("TM_WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

from pysglite2 import dbapi as sglite

conn = sqglite.connect ("...")
conn.enable load extension (True)

conn.execute ('SELECT load extension("libspatialite-2.d11")"')
curs = conn.cursor ()

Any command-line input or output is written as follows:

>>> import sqglite3

>>> conn = sglite3.connect (" :memory:")

>>> conn.enable load extension (True)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you

want, you can change the format of the downloaded data by clicking on the Modify
Data Request hyperlink".

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[4]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub . com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book

purchased from your account at http://www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub. com/support.

[51]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Geo-Spatial Development
Using Python

This chapter provides an overview of the Python programming language and
geo-spatial development. Please note that this is not a tutorial on how to use the
Python language; Python is easy to learn, but the details are beyond the scope
of this book.

In this chapter, we will cover:
e What the Python programming language is, and how it differs from other
languages
¢ Anintroduction to the Python Standard Library and the Python Package
Index
e What the terms "geo-spatial data" and "geo-spatial development" refer to

e An overview of the process of accessing, manipulating, and displaying
geo-spatial data

e Some of the major applications for geo-spatial development

e Some of the recent trends in the field of geo-spatial development

Python

Python (http://python.org) is a modern, high-level language suitable for a

wide variety of programming tasks. Technically, it is often referred to as a "scripting"
language, though this distinction isn't very important nowadays.

Python has been used for writing web-based systems, desktop applications, games,
scientific programming, and even utilities and other higher-level parts of various
operating systems.

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Geo-Spatial Development Using Python

Python supports a wide range of programming idioms, from straightforward
procedural programming to object-oriented programming and functional
programming.

While Python is generally considered to be an "interpreted" language, and is
occasionally criticized for being slow compared to "compiled" languages such as C,
the use of byte-compilation and the fact that much of the heavy lifting is done by
library code means that Python's performance is often surprisingly good.

Open source versions of the Python interpreter are freely available for all major
operating systems. Python is eminently suitable for all sorts of programming,

from quick one-off scripts to building huge and complex systems. It can even be
run in interactive (command-line) mode, allowing you to type in commands and
immediately see the results. This is ideal for doing quick calculations or figuring out
how a particular library works.

One of the first things a developer notices about Python compared with other
languages such as Java or C++ is how expressive the language is —what may take 20
or 30 lines of code in Java can often be written in half a dozen lines of code in Python.
For example, imagine that you have an array of latitude and longitude values you
wish to process one at a time. In Python, this is trivial:

for lat,long in coordinates:

Compare this with how much work a programmer would have to do in Java to
achieve the same result:

for

(int i=0; i < coordinates.length; i++) ({

float lat = coordinates([i] [0];

float long = coordinates[i] [1];

While the Python language itself makes programming quick and easy, allowing you
to focus on the task at hand, the Python Standard Libraries make programming
even more efficient. These libraries make it easy to do things such as converting date
and time values, manipulating strings, downloading data from websites, performing
complex maths, working with e-mail messages, encoding and decoding data,

XML parsing, data encryption, file manipulation, compressing and decompressing
files, working with databases — the list goes on. What you can do with the Python
Standard Libraries is truly amazing.

[PUBLISHING]

[8]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

Chapter 1

As well as the built-in modules in the Python Standard Libraries, it is easy to
download and install custom modules, which can be written in either Python or C. The
Python Package Index (http://pypi.python.org) provides thousands of additional
modules that you can download and install. And, if that isn't enough, many other
systems provide python bindings to allow you to access them directly from within your
programs. We will be making heavy use of Python bindings in this book.

It should be pointed out that there are different versions of Python
available. Python 2.x is the most common version in use today, while

the Python developers have been working for the past several years on

a completely new, non-backwards-compatible version called Python 3.
Eventually, Python 3 will replace Python 2.x, but at this stage most of the
third-party libraries (including all the GIS tools we will be using) only work
with Python 2.x. For this reason, we won't be using Python 3 in this book.

Python is in many ways an ideal programming language. Once you are familiar
with the language itself and have used it a few times, you'll find it incredibly easy
to write programs to solve various tasks. Rather than getting buried in a morass

of type-definitions and low-level string manipulation, you can simply concentrate
on what you want to achieve. You end up almost thinking directly in Python code.
Programming in Python is straightforward, efficient and, dare I say it, fun.

Geo-spatial development

The term Geo-spatial refers to information that is located on the Earth's surface using
coordinates. This can include, for example, the position of a cell phone tower, the
shape of a road, or the outline of a country:

[PUBLISHING]

[o]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

[PACKT

Geo-Spatial Development Using Python

Geo-spatial data often associates some piece of information with a
particular location. For example, here is a map of Afghanistan from the
http://afghanistanelectiondata.org website showing the number
of votes cast in each location in the 2009 elections:

Geo-spatial development is the process of writing computer programs that can
access, manipulate, and display this type of information.

Internally, geo-spatial data is represented as a series of coordinates, often in the form
of latitude and longitude values. Additional attributes such as temperature, soil
type, height, or the name of a landmark are also often present. There can be many
thousands (or even millions) of data points for a single set of geo-spatial data. For
example, the following outline of New Zealand consists of almost 12,000 individual
data points:

PUBLISHING

[10]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

Chapter 1

Because so much data is involved, it is common to store geo-spatial information
within a database. A large part of this book will be concerned with how to store
your geo-spatial information in a database, and how to access it efficiently.

Geo-spatial data comes in many different forms. Different GIS (Geographical
Information System) vendors have produced their own file formats over the years,
and various organizations have also defined their own standards. It's often necessary
to use a Python library to read files in the correct format when importing geo-spatial
data into your database.

Unfortunately, not all geo-spatial data points are compatible. Just like a distance
value of 2.8 can have a very different meaning depending on whether you are using
kilometers or miles, a given latitude and longitude value can represent any number of
different points on the Earth's surface, depending on which projection has been used.

A projection is a way of representing the Earth's surface in two dimensions. We will
look at projections in more detail in Chapter 2, GIS, but for now just keep in mind
that every piece of geo-spatial data has a projection associated with it. To compare
or combine two sets of geo-spatial data, it is often necessary to convert the data from
one projection to another.

Latitude and longitude values are sometimes referred to as unprojected
e coordinates. We'll learn more about this in the next chapter.

In addition to the prosaic tasks of importing geo-spatial data from various external
file formats and translating data from one projection to another, geo-spatial data

can also be manipulated to solve various interesting problems. Obvious examples
include the task of calculating the distance between two points, calculating the length
of a road, or finding all data points within a given radius of a selected point. We will
be using Python libraries to solve all of these problems, and more.

Finally, geo-spatial data by itself is not very interesting. A long list of coordinates
tells you almost nothing; it isn't until those numbers are used to draw a picture
that you can make sense of it. Drawing maps, placing data points onto a map,
and allowing users to interact with maps are all important aspects of geo-spatial
development. We will be looking at all of these in later chapters.

Applications of geo-spatial development

Let's take a brief look at some of the more common geo-spatial development tasks
you might encounter.

[11]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Geo-Spatial Development Using Python

Analyzing geo-spatial data

Imagine that you have a database containing a range of geo-spatial data for San
Francisco. This database might include geographical features, roads and the location
of prominent buildings and other man-made features such as bridges, airports, and
SO on.

Such a database can be a valuable resource for answering various questions.
For example:

e What's the longest road in Sausalito?
¢ How many bridges are there in Oakland?
e What is the total area of the Golden Gate Park?

e How far is it from Pier 39 to the Moscone Center?

Many of these types of problems can be solved using tools such as the PostGIS
spatially-enabled database. For example, to calculate the total area of the Golden
Gate Park, you might use the following SQL query:

select ST Area(geometry) from features
where name = "Golden Gate Park";

To calculate the distance between two places, you first have to geocode the locations
to obtain their latitude and longitude. There are various ways to do this; one simple
approach is to use a free geocoding web service such as this:

http://tinygeocoder.com/create-api.php?g=Pier 39,San Francisco,CA
This returns a latitude value of 37.809662 and a longitude value of -122.410408.
These latitude and longitude values are in decimal

degrees. If you don't know what these are, don't worry;
we'll talk about decimal degrees in Chapter 2, GIS.

Similarly, we can find the location of the Moscone Center using this query:

http://tinygeocoder.com/create-api.php?g=Moscone Center, San
Francisco, CA

This returns a latitude value of 37.784161 and a longitude value of -122.401489.

Now that we have the coordinates for the two desired locations, we can calculate
the distance between them using the pyproj Python library:

[12]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 1

import pyproj

latl,longl = (37.809662,-122.410408)
lat2,long2 = (37.784161,-122.401489)

geod = pyproj.Geod(ellps="WGS84")
anglel,angle2,distance = geod.inv(longl, latl, long2, lat2)

)

print "Distance is %0.2f meters" % distance
This prints the distance between the two points:

Distance is 2937.41 meters

Don't worry about the "WGS84" reference at this
— stage; we'll look at what this means in Chapter 2, GIS.

Of course, you wouldn't normally do this sort of analysis on a one-off basis like

this —it's much more common to create a Python program that will answer these
sorts of questions for any desired set of data. You might, for example, create a web
application that displays a menu of available calculations. One of the options in

this menu might be to calculate the distance between two points; when this option

is selected, the web application would prompt the user to enter the two locations,
attempt to geocode them by calling an appropriate web service (and display an error
message if a location couldn't be geocoded), then calculate the distance between the
two points using Proj, and finally display the results to the user.

Alternatively, if you have a database containing useful geo-spatial data, you could
let the user select the two locations from the database rather than typing in arbitrary
location names or street addresses.

However you choose to structure it, performing calculations like this will usually
be a major part of your geo-spatial application.

Visualizing geo-spatial data

Imagine that you wanted to see which areas of a city are typically covered by a taxi
during an average working day. You might place a GPS recorder into a taxi and
leave it to record the taxi's position over several days. The results would be a series
of timestamp, latitude and longitude values like the following:

2010-03-21 9:15:23 -38.16614499 176.2336626
2010-03-21 9:15:27 -38.16608632 176.2335635
2010-03-21 9:15:34 -38.16604198 176.2334771
2010-03-21 9:15:39 -38.16601507 176.2333958

[13]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Geo-Spatial Development Using Python

By themselves, these raw numbers tell you almost nothing. But, when you display
this data visually, the numbers start to make sense:

You can immediately see that the taxi tends to go along the same streets again and
again. And, if you draw this data as an overlay on top of a street map, you can see
exactly where the taxi has been:

[14]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 1

Tutane

ﬁ- HAUPSpS Street

Pererika Strest

Elizabeth Streed

wans duj

1PRAS NEEREYM

Victoria Street

c
=
3l
A
H
=

19375 Bury

53
A
5
]

199015 Yy
Herewini Street

Toko Street

=
3
&
“
b1
—_— ..
Vork Street Kahikatea Street Seddon Stipet
e M
Ll 5 &
g g o j
2 5 = Grey Street
H w kS
3 ¥ ent
=

ﬁ Robertson {Reet

(aallg MARLLBUIH

Ti Street

(Street map courtesy of http:

//openstreetmap.org).

While this is a very simple example, visualization is a crucial aspect of working with
geo-spatial data. How data is displayed visually, how different data sets are overlaid,
and how the user can manipulate data directly in a visual format are all going to be

major topics of this book.

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[15]

2635 State Street, Apt T1, Santa Barbara, 93105

PUBLISHING

Geo-Spatial Development Using Python

Creating a geo-spatial mash-up
The concept of a "mash-up" has become popular in recent years. Mash-ups are

applications that combine data and functionality from more than one source. For
example, a typical mash-up may combine details of houses for rent in a given city,

and plot the location of each rental on a map, like this:

ann HousingMaps. [}
@ E @ 9 http:/ /www.housingmaps.com/ +r v || Q- craigslist mashup
For Rent ForSale Rooms Sublets Powered by craigslist and Google Maps
. . ; About | Feedback
City:[San Francisco |2) Price: [51500 - 52000 3] Show Filters™®” Refresh Link
2
‘3; [Map [sawlite [Hyorid | (O 51750 1bd Lame 1Bdrm. Unit Avail 5/6/10 404 &
E T O s 1o i:;a;lo.ismd Avail 5/6/10 in Twin Peaks w0a
2 Areal
3 =t2lBuens Quter, Harbor (O 51750 1ibd Groat 18dm. wiDishwasher Avail S/6/10 404
Sland o e
S1750 1bd Nice 1Bd. Avall 56110 404
axlandfl | {
& Qaki
romaol o éﬁ Mte et (O 51788 1bd Lovely 18d. in Pac His wiFireplace! 4104
South Bay (D) o Terrific 18drm. in a Wonderful Neishborhood!
g O 51799 00 o Winero vou Livet 04
(O 1739 1bd Cuts 1B in Pacific Heights wiCute Features 4104
Oute ~ @ 1700 2bd Very ciean, 2 Bdm, 1 Bath apartment 4104
o 0 @ Cute Pacilic Heights 1Bd. wiFireg:
u 'acific Hei wiFireplace in
(3 Fulten 5t & O §1799 1bd Gorgeous Areal o4
i - Amz North Beach Studio wiDeck & Fireplace
U
4 IW O sios Awall 4120110 o4
s | Satencae O sissa Igz\;?‘!m‘ss(ludmAvai\ab34;‘20#10wflncmdib\n w0e
eights. !
Nice North Beach Studio wiDeck & Fireplace
g Forest Hil O s Coming Soon! a4
(@) f 42604 O st Avsilable 4/20110: Amg Studio in Great Areafor 0,
%ewm L Babos Bayview Ternfc Pricat)
) g1 [Temace i = Datict (0) 51589 1bd Beautiul view of the ciy with a balcony 4104
3 f W Bayview g‘z\\l:l‘ Great Furnished Jr. 18d. in New Bidg.|
O s Immediate Move-In Rate of 1628 o4
G |L|Mhmmemea S Great 18d. in New Bido. Immediate Move In
Great 16d. in New Bida. Immediate Move In
GODglE AT = CrockerJoin_ {foTiap data €2010 Google - Tims of Use O steom 1o B el a4 '/
/]

This example comes from http://housingmaps. com.

The Google Maps API has been immensely popular in creating these types of
mash-ups. However, Google Maps has some serious licensing and other limitations. It
is not the only option — tools such as Mapnik, open layers, and MapServer, to name a

few, also allow you to create mash-ups that overlay your own data onto a map.

Most of these mash-ups run as web applications across the Internet, running on a
server that can be accessed by anyone who has a web browser. Sometimes, the
mash-ups are private, requiring password access, but usually they are publically
available and can be used by anyone. Indeed, many businesses (such as the rental
mashup shown above) are based on freely-available geo-spatial mash-ups.

[16]

PUBLISHING

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

Chapter 1

Recent developments

A decade ago, geo-spatial development was vastly more limited than it is today.
Professional (and hugely expensive) Geographical Information Systems were the
norm for working with and visualizing geo-spatial data. Open source tools, where
they were available, were obscure and hard to use. What is more, everything ran on
the desktop — the concept of working with geo-spatial data across the Internet was
no more than a distant dream.

In 2005, Google released two products that completely changed the face of
geo-spatial development: Google Maps and Google Earth made it possible

for anyone with a web browser or a desktop computer to view and work with
geo-spatial data. Instead of requiring expert knowledge and years of practice, even
a four year-old could instantly view and manipulate interactive maps of the world.

Google's products are not perfect — the map projections are deliberately simplified,
leading to errors and problems with displaying overlays; these products are only
free for non-commercial use; and they include almost no ability to perform
geo-spatial analysis. Despite these limitations, they have had a huge effect on the
field of geo-spatial development. People became aware of what was possible, and
the use of maps and their underlying geo-spatial data has become so prevalent that
even cell phones now commonly include built-in mapping tools.

The Global Positioning System (GPS) has also had a major influence on geo-spatial
development. Geo-spatial data for streets and other man-made and natural features
used to be an expensive and tightly controlled resource, often created by scanning
aerial photographs and then manually drawing an outline of a street or coastline
over the top to digitize the required features. With the advent of cheap and
readily-available portable GPS units, anyone who wishes to can now capture

their own geo-spatial data. Indeed, many people have made a hobby of recording,
editing, and improving the accuracy of street and topological data, which are then
freely shared across the Internet. All this means that you're not limited to recording
your own data, or purchasing data from a commercial organization; volunteered
information is now often as accurate and useful as commercially-available data,
and may well be suitable for your geo-spatial application.

The open source software movement has also had a major influence on geo-spatial
development. Instead of relying on commercial toolsets, it is now possible to build
complex geo-spatial applications entirely out of freely-available tools and libraries.
Because the source code for these tools is often available, developers can improve
and extend these toolkits, fixing problems and adding new features for the benefit
of everyone. Tools such as PROJ .4, PostGIS, OGR, and Mapnik are all excellent
geo-spatial toolkits that are benefactors of the open source movement. We will

be making use of all these tools throughout this book.

[17]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Geo-Spatial Development Using Python

As well as standalone tools and libraries, a number of geo-spatial-related
Application Programming Interfaces (APIs) have become available. Google has
provided a number of APIs that can be used to include maps and perform limited
geo-spatial analysis within a website. Other services such as tinygeocoder.com and
geoapi.com allow you to perform various geo-spatial tasks that would be difficult to
do if you were limited to using your own data and programming resources.

As more and more geo-spatial data becomes available from an increasing number
of sources, and as the number of tools and systems that can work with this data also
increases, it has become essential to define standards for geo-spatial data. The Open
Geospatial Consortium, often abbreviated to OGC (http://www.opengeospatial.
org), is an international standards organization that aims to do precisely this: to
provide a set of standard formats and protocols for sharing and storing geo-spatial
data. These standards, including GML, KML, GeoRSS, WMS, WES, and WCS,
provide a shared "language" in which geo-spatial data can be expressed. Tools

such as commercial and open source GIS systems, Google Earth, web-based APlIs,
and specialized geo-spatial toolkits such as OGR are all able to work with these
standards. Indeed, an important aspect of a geo-spatial toolkit is

the ability to understand and translate data between these various formats.

As GPS units have become more ubiquitous, it has become possible to record your
location data as you are performing another task. Geolocation, the act of recording
your location as you are doing something, is becoming increasingly common. The
Twitter social networking service, for example, now allows you to record and
display your current location as you enter a status update. As you approach your
office, sophisticated To-do list software can now automatically hide any tasks that
can't be done at that location. Your phone can also tell you which of your friends are
nearby, and search results can be filtered to only show nearby businesses.

All of this is simply the continuation of a trend that started when GIS systems were
housed on mainframe computers and operated by specialists who spent years
learning about them. Geo-spatial data and applications have been democratized over
the years, making them available in more places, to more people. What was possible
only in a large organization can now be done by anyone using a handheld device. As
technology continues to improve, and the tools become more powerful, this trend is
sure to continue.

[18]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 1

Summary

In this chapter, we briefly introduced the Python programming language and
the main concepts behind geo-spatial development. We have seen:

e That Python is a very high-level language eminently suited to the task of geo-
spatial development.

e That there are a number of libraries that can be downloaded to make it easier
to perform geo-spatial development work in Python.

e That the term "geo-spatial data" refers to information that is located on the
Earth's surface using coordinates.

e That the term "geo-spatial development" refers to the process of writing
computer programs that can access, manipulate, and display geo-spatial
data.

e That the process of accessing geo-spatial data is non-trivial, thanks to
differing file formats and data standards.

e What types of questions can be answered by analyzing geo-spatial data.
e How geo-spatial data can be used for visualization.

¢ How mash-ups can be used to combine data (often geo-spatial data) in useful
and interesting ways.

¢ How Google Maps, Google Earth, and the development of cheap and
portable GPS units have "democratized" geo-spatial development.

¢ The influence the open source software movement has had on the availability
of high quality, freely-available tools for geo-spatial development.

¢ How various standards organizations have defined formats and protocols for
sharing and storing geo-spatial data.

e The increasing use of geolocation to capture and work with geo-spatial data
in surprising and useful ways.

In the next chapter, we will look in more detail at traditional Geographic Information
Systems (GIS), including a number of important concepts that you need to
understand in order to work with geo-spatial data. Different geo-spatial formats will
be examined, and we will finish by using Python to perform various calculations
using geo-spatial data.

[19]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

The term GIS generally refers to Geographical Information Systems, which are complex
computer systems for storing, manipulating, and displaying geo-spatial data. GIS
can also be used to refer to the more general Geographic Information Sciences, which is
the science surrounding the use of GIS systems.

In this chapter, we will look at:

e The central GIS concepts you will have to become familiar with: location,
distance, units, projections, coordinate systems, datums and shapes

e Some of the major data formats you are likely to encounter when working
with geo-spatial data

e Some of the processes involved in working directly with geo-spatial data

Core GIS concepts

Working with geo-spatial data is complicated because you are dealing with
mathematical models of the Earth's surface. In many ways, it is easy to think of

the Earth as a sphere on which you can place your data. That might be easy, but

it isn't accurate — the Earth is an oblate spheroid rather than a perfect sphere. This
difference, as well as other mathematical complexities we won't get into here, means
that representing points, lines, and areas on the surface of the Earth is a rather
complicated process.

Let's take a look at some of the key GIS concepts you will become familiar with as
you work with geo-spatial data.

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

Location

Locations represent points on the surface of the Earth. One of the most common
ways to measure location is through the use of latitude and longitude coordinates.
For example, my current location (as measured by a GPS receiver) is 38.167446
degrees south and 176 .234436 degrees east. What do these numbers mean and how
are they useful?

Think of the Earth as a hollow sphere with an axis drawn through its middle:

For any given point on the Earth's surface, you can draw a line that connects that
point with the centre of the Earth, as shown in the following image:

The point's latitude is the angle that this line makes in the north-south direction,
relative to the equator:

[22]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

90 degrees north

90 degrees south

In the same manner, the point's longitude is the angle that this line makes in the
east-west direction, relative to an arbitrary starting point (typically the location of the
Royal Observatory at Greenwich, England):

A
P T
7 .
Odﬁ'gree / \\
5 \
Wegy .-'// \ ”
Ilrr’ \", 180 deg;ee
\
f = 4 '
R Ty
0 degrees == _."_“‘z'.r-li’/f,"
a" ffaqe - Qad
Q;'s egrees
8,
st
Y
[23]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

By convention, positive latitude values are in the northern hemisphere, while
negative latitude values are in the southern hemisphere. Similarly, positive longitude
values are east of Greenwich, and negative longitude values are west of Greenwich.
Thus, latitudes and longitudes cover the entire Earth like this:

+90

+60

+30

Latitude
o

-30

-60

-90

-180 -90 0 +90 +180
Longitude

The horizontal lines, representing points of equal latitude, are called parallels, while
the vertical lines, representing points of equal longitude, are called meridians. The
meridian at zero longitude is often called the prime meridian. By definition, the
parallel at zero latitude corresponds with the Earth's equator.

There are two things to remember when working with latitude and longitude values:

1. Western longitudes are generally negative, but you may find situations
(particularly when dealing with US-specific data) where western longitudes
are given as positive values.

2. The longitude values wrap around at the £180 degrees point. That is, as you
travel east, your longitude will go 177, 178, 179, 180, -179, -178, -177, and
so on. This can make basic distance calculations rather confusing if you are
doing them yourself rather than relying on a library to do the work for you.

A latitude and longitude value refers to what is called a geodetic location. A
geodetic location identifies a precise point on the Earth's surface, regardless of

what might be at that location. While much of the data we will be working with
involves geodetic locations, there are other ways of describing a location which you
may encounter. For example, a civic location is simply a street address, which is
another perfectly valid (though less scientifically precise) way of defining a location.
Similarly, jurisdictional locations include information about which governmental
boundary (such as an electoral ward, borough, or city) the location is within. This
information is important in some contexts.

[24]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

Distance

The distance between two points can be thought of in different ways. For example:

¢ Angular Distance: This is the angle between two rays going out from the
centre of the Earth through the two points:

Angular distances are commonly used in seismology, and you may
encounter them when working with geo-spatial data.

e Linear Distance: This is what people typically mean when they talk of
distance —how far apart two points on the Earth's surface are:

This is often described as an "as the crow flies" distance. We'll discuss this in
more detail shortly, though be aware that linear distances aren't quite as
simple as they might appear.

[25]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

e Traveling Distance: Linear ("as the crow flies") distances are all very well,
but very few people can fly like crows. Another useful way of measuring
distance is to measure how far you would actually have to travel to get from
one point to another, typically following a road or other obvious route:

s 2
=0 S, Eruera Skreet @
i SH30A
U Street
Pererika Street
Elizabeth Sireeis
. .
i Victoria Street
-
T leal
o=t] -
g £ S & ¥
= E i & A &
2 i E m = ¥
3 = i i +3
& i g i g 2
v o g " e =
- Ml e
g
York Street in|
ark Wahlkates Street Seddan Striket -
=3
=
5
e
@ €—Fotsteet
e AR
ae o
T -
& A]
5 e v Grey Street
i iy =
Fm . Clne i

Most of the time, you will be dealing with linear distances. If the Earth was flat,
linear distances would be trivial to calculate — you simply measure the length of a
line drawn between the two points. Of course, the Earth is not flat, which means that
actual distance calculations are rather more complicated:

Actual Distance = 20.36 miles

"Flat Earth" Distance = 20.32 miles

Because we are working with distances between points on the Earth's surface rather
than points on a flat surface, we are actually using what is called the great circle
distance. The great circle distance is the length of a semicircle going between two
points on the surface of the earth, where the semicircle is centered around the middle
of the earth:

[26]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

It is relatively straightforward to calculate the great circle distance between any two
points if you assume that the Earth is spherical; the Haversine formula is often used
for this. More complicated techniques that more accurately represent the shape of the
Earth are available, though in many cases the Haversine formula is sufficient.

Units

In September 1999, the Mars Climate Orbiter reached the outer edges of the Martian
atmosphere, after having traveled through space for 286 days and costing a total of
$327 million to create. As it approached its final orbit, a miscalculation caused it to
fly too low, and the Orbiter was destroyed. The reason? The craft's thrusters were
calculating force using imperial units, while the spacecraft's computer worked with
metric units. The result was a disaster for NASA, and a pointed reminder of just how
important it is to understand which units your data is in.

Geo-spatial data can come in a variety of different units. Distances can be measured
in metric and imperial, of course, but there are actually a lot of different ways in
which a given distance can be measured. These include:

e Millimeters

e Centimeters

e Inches

e International feet

e US. survey feet

e Meters
e Yards

o Kilometers

[PUBLISHING]

[27]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

GIS

¢ International miles
e U.S. survey (statute) miles

e Nautical miles

Whenever you are working with distance data, it's important that you know which
units those distances are in. You will also often find it necessary to convert data from
one unit of measurement to another.

Angular measurements can also be in different units: degrees or radians. Once again,
you will often have to convert from one to the other.

While these are not strictly speaking different units, you will often need to convert
longitude and latitude values because of the various ways these values can be
represented. Traditionally, longitude and latitude values have been written using
"degrees, minutes, and seconds" notation, like this:

176° 14' 4!
Another possible way of writing these numbers is to use "degrees and decimal
minutes" notation:

176° 14.066"

Finally, there is the "decimal degrees" notation:

176.234436°

Decimal degrees are quite common now, mainly because these are simply floating-
point numbers you can put directly into your programs, but you may also need to
convert longitude and latitude values from other formats before you can use them.

Another possible issue with longitude and latitude values is that the quadrant (east,
west, north, south) can sometimes be given as a separate value rather than using
positive or negative values. For example:

176.234436° E

Fortunately, all these conversions are relatively straightforward. But it is important
to know which units, and in which format your data is in — your software may not
crash a spacecraft, but it will produce some very strange and incomprehensible
results if you aren't careful.

Projections

Creating a two-dimensional map from the three-dimensional shape of the Earth is
a process known as projection. A projection is a mathematical transformation that
unwraps the three-dimensional shape of the Earth and places it onto a
two-dimensional plane.

[28]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

Hundreds of different projections have been developed, but none of them are perfect.
Indeed, it is mathematically impossible to represent the three-dimensional Earth's
surface on a two-dimensional plane without introducing some sort of distortion; the
trick is to choose a projection where the distortion doesn't matter for your particular
use. For example, some projections represent certain areas of the Earth's surface
accurately while adding major distortion to other parts of the Earth; these projections
are useful for maps in the accurate portion of the Earth, but not elsewhere. Other
projections distort the shape of a country while maintaining its area, while yet other
projections do the opposite.

There are three main groups of projections: cylindrical, conical, and azimuthal. Let's
look at each of these briefly.

Cylindrical projections
An easy way to understand cylindrical projections is to imagine that the Earth is like
a spherical Chinese lantern, with a candle in the middle:

[PUBLISHING]

[29]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

GIS

If you placed this lantern-Earth inside a paper cylinder, the candle would "project"
the surface of the Earth onto the inside of the cylinder:

Of course, this is a simplification —in reality, map projections don't actually use

light sources to project the Earth's surface onto a plane, but instead use sophisticated
mathematical transformations that result in less distortion. But the concept is

the same.

[30]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
PAC KT 2635 State Street, Apt T1, Santa Barbara, 93105

PUBLISHING

Chapter 2

Some of the main types of cylindrical projections include the Mercator Projection, the
Equal-Area Cylindrical Projection, and the Universal Transverse Mercator Projection.

Conic projections

A conic projection is obtained by projecting the Earth's surface onto a cone:

Some of the more common types of conic projections include the Albers Equal-Area
Projection, the Lambert Conformal Conic Projection, and the Equidistant Projection.

Azimuthal projections

An azimuthal projection involves projecting the Earth's surface directly onto
a flat surface:

[31]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
PAC KT 2635 State Street, Apt T1, Santa Barbara, 93105

PUBLISHING

GIS

Azimuthal projections are centered around a single point, and don't generally show
the entire Earth's surface. They do, however, emphasize the spherical nature of the
Earth. In many ways, azimuthal projections depict the Earth as it would be seen
from space.

Some of the main types of azimuthal projections include the Gnomonic Projection,
the Lambert Equal-Area Azimuthal Projection, and the Orthographic Projection.

The nature of map projections

As mentioned earlier, there is no such thing as a perfect projection —every projection
distorts the Earth's surface in some way. Indeed, the mathematician Carl Gausse
proved that it is mathematically impossible to project a three-dimensional shape
such as a sphere onto a flat plane without introducing some sort of distortion. This
is why there are so many different types of projections —some projections are more
suited to a given purpose, but no projection can do everything.

Whenever you create or work with geo-spatial data, it is essential that you know
which projection has been used to create that data. Without knowing the projection,
you won't be able to plot data or perform accurate calculations.

Coordinate systems

Closely related to map projection is the concept of a coordinate system. There
are two types of coordinate systems you will need to be familiar with: projected
coordinate systems and unprojected coordinate systems.

Latitude and longitude values are an example of an unprojected coordinate system.
These are coordinates that directly refer to a point on the Earth's surface:

[32]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

[PACKT

Chapter 2

Unprojected coordinates are useful because they can accurately represent a desired
point on the Earth's surface, but they also make it very difficult to perform distance
and other geo-spatial calculations.

Projected coordinates, on the other hand, are coordinates that refer to a point on a
two-dimensional map that represents the surface of the Earth:

A projected coordinate system, as the name implies, makes use of a map projection
to first convert the Earth into a two-dimensional Cartesian plane, and then places
points onto that plane. To work with a projected coordinate system, you need to
know which projection was used to create the underlying map.

For both projected and unprojected coordinates, the coordinate system also implies
a set of reference points that allow you to identify where a given point will be.

For example, the unprojected lat/long coordinate system represents the longitude
value of zero by a line running north-south through the Greenwich observatory in
England. Similarly, a latitude value of zero represents a line running around the
equator of the Earth.

PUBLISHING

[33]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105

GIS

For projected coordinate systems, you typically define an origin and the map units.
Some coordinate systems also use false northing and false easting values to adjust
the position of the origin, as shown in the following figure:

Position of Coordinate
on the Map
Y map
units up
False X map units
Northing across
ol
v
False Easting
————— -
Origin

To give a concrete example, the Universal Transverse Mercator (UTM) coordinate
system divides the world up into 60 different "zones", each zone using a different
map projection to minimize projection errors. Within a given zone, the coordinates
are measured as the number of meters away from the zone's origin, which is the
intersection of the equator and the central meridian for that zone. False northing and
false easting values are then added to the distance in meters away from this reference
point to avoid having to deal with negative numbers.

As you can imagine, working with projected coordinate systems such as this can
get quite complicated. However, the big advantage of projected coordinates is that
it is easy to perform geo-spatial calculations using these coordinates. For example,
to calculate the distance between two points, both using the same UTM coordinate
system, you simply calculate the length of the line between them, which is the
distance between the two points, in meters. This is ridiculously easy compared with
the work required to calculate distances using unprojected coordinates.

Of course, this assumes that the two points are both in the same coordinate system.
Since projected coordinate systems are generally only accurate over a relatively small
area, you can get into trouble if the two points aren't both in the same coordinate
system (for example, if they are in two different UTM zones). This is where
unprojected coordinate systems have a big advantage — they cover the entire Earth.

[34]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

Datums

Roughly speaking, a datum is a mathematical model of the Earth used to describe
locations on the Earth's surface. A datum consists of a set of reference points, often
combined with a model of the shape of the Earth. The reference points are used to
describe the location of other points on the Earth's surface, while the model of the
Earth's shape is used when projecting the Earth's surface onto a two-dimensional
plane. Thus, datums are used by both map projections and coordinate systems.

While there are hundreds of different datums in use throughout the world, most
of these only apply to a localized area. There are three main reference datums
that cover larger areas and which you are likely to encounter when working with
geo-spatial data:

e NAD 27: This is the North American datum of 1927. It includes a definition
of the Earth's shape (using a model called the Clarke Spheroid of 1866) and
a set of reference points centered around Meades Ranch in Kansas. NAD 27
can be thought of as a local datum covering North America.

e NAD 83: The North American datum of 1983. This datum makes use of
a more complex model of the Earth's shape (the 1980 Geodetic Reference
System, GRS 80). NAD 83 can be thought of as a local datum covering the
United States, Canada, Mexico, and Central America.

e WGS 84: The World geodetic system of 1984. This is a global datum covering
the entire Earth. It makes use of yet another model of the Earth's shape (the
Earth Gravitational Model of 1996, EGM 96) and uses reference points based
on the IERS International Reference Meridian. WGS 84 is a very popular
datum. When dealing with geo-spatial data covering the United States, WGS
84 is basically identical to NAD 83. WGS 84 also has the distinction of being
used by Global Positioning System satellites, so all data captured by GPS
units will use this datum.

While WGS 84 is the most common datum in use today, a lot of geo-spatial data makes
use of other datums. Whenever you are dealing with a coordinate value, it is important
to know which datum was used to calculate that coordinate. A given point in NAD 27,
for example, may be several hundred feet away from that same coordinate expressed
in WGS 84. Thus, it is vital that you know which datum is being used for a given set of
geo-spatial data, and convert to a different datum where necessary.

[35]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

Shapes

Geo-spatial data often represents shapes in the form of points, paths, and outlines:

A point, of course, is simply a coordinate, described by two or more numbers within
a projected or unprojected coordinate system.

A path is generally described using what is called a linestring:

A linestring represents a path as a connected series of line segments. A linestring is a
deliberate simplification of a path, a way of approximating the curving path without
having to deal with the complex maths required to draw and manipulate curves.
Linestrings are often used in geo-spatial data to represent roads, rivers, contour lines,
and so on.

[36]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

An outline is often represented in geo-spatial data using a polygon:

As with linestrings, polygons are described as a connected series of line segments.
The only difference is that the polygon is closed; that is, the last line segment finishes
where the first line segment starts. Polygons are commonly used in geo-spatial data
to describe the outline of countries, lakes, cities, and more.

GIS data formats

A GIS data format specifies how geo-spatial data is stored in a file (or multiple files)
on disk. The format describes the logical structure used to store geo-spatial data
within the file(s).

While we talk about storing information on disk, data formats

% can also be used to transmit geo-spatial information between
/=" computer systems. For example, a web service might provide map

data on request, transmitting that data in a particular format.

A GIS data format will typically support:

e Geo-spatial data describing geographical features.

e Additional metadata describing this data, including the datum and
projection used, the coordinate system and units that the data is in, the date
this file was last updated, and so on.

e Attributes providing additional information about the geographical features
that are being described. For example, a city feature may have attributes such
non non

as '"name", "population", "average temperature", and others.

¢ Display information such as the color or line style to use when a feature is
displayed.

[37]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

There are two main types of GIS data: raster format data and vector format data.
Raster formats are generally used to store bitmapped images, such as scanned paper
maps or aerial photographs. Vector formats, on the other hand, represent spatial data
using points, lines, and polygons. Vector formats are the most common type used by
GIS applications as the data is smaller and easier to manipulate.

Some of the more common raster formats include:

o Digital Raster Graphic (DRG): This format is used to store digital scans of
paper maps

¢ Digital Elevation Model (DEM): Used by the US Geological Survey to record
elevation data

e Band Interleaved by Line, Band Interleaved by Pixel, Band Sequential
(BIL, BIP, BSQ): These data formats are typically used by remote sensing
systems

Some of the more common vector formats include:

e Shapefile: An open specification, developed by ESR], for storing and
exchanging GIS data. A Shapefile actually consists of a collection of files all
with the same base name, for example hawaii.shp, hawaii.shx, hawaii.
dbf, and so on

e Simple Features: An OpenGIS standard for storing geographical data
(points, lines, polygons) along with associated attributes

e TIGER/Line: A text-based format previously used by the U.S. Census
Bureau to describe geographic features such as roads, buildings, rivers, and
coastlines. More recent data comes in the Shapefile format, so the TIGER/
Line format is only used for earlier Census Bureau datasets

e Coverage: A proprietary data format used by ESRI's ARC/INFO system

In addition to these "major" data formats, there are also so-called micro-formats that
are often used to represent individual pieces of geo-spatial data. These are often
used to represent shapes within a running program, or to transfer shapes from one
program to another, but aren't generally used to store data permanently. As you
work with geo-spatial data, you are likely to encounter the following micro-formats:

e Well-known Text (WKT): This is a simple text-based format for representing
a single geographic feature such as a polygon or linestring

¢ Well-known Binary (WKB): This alternative to WKT uses binary data rather
than text to represent a single geographic feature

¢ GeoJSON: An open format for encoding geographic data structures, based
on the JSON data interchange format

[38]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

¢ Geography Markup Language (GML): An XML-based open standard for
exchanging GIS data

Whenever you work with geo-spatial data, you need to know which format the data
is in so that you can extract the information you need from the file(s), and where
necessary transform the data from one format to another.

Working with GIS data manually
Let's take a brief look at the process of working with GIS data manually. Before we
can begin, there are two things you need to do:

e Obtain some GIS data

e Install the GDAL Python library so that you can read the necessary data files
Let's use the U.S. Census Bureau's website to download a set of vector maps for the

various U.S. states. The main site for obtaining GIS data from the U.S. Census Bureau
can be found at:

http://www.census.gov/geo/www/tiger
To make things simpler, though, let's bypass the website and directly download the
file we need:

http://www2.census.gov/geo/tiger/TIGER2009/tl 2009 us_state.zip
The resulting file, t1_2009_us_state.zip, should be a ZIP-format archive. After
uncompressing the archive, you should have the following files:

tl 2009 _us_state.dbf

tl 2009 us_state.prj

tl 2009 us_state.shp

tl 2009 us_state.shp.xml

tl 2009 us_state.shx

These files make up a Shapefile containing the outlines of all the U.S. states. Place
these files together in a convenient directory.

We next have to download the GDAL Python library. The main website for GDAL
can be found at:

http://gdal.org

[39]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

The easiest way to install GDAL onto a Windows or Unix machine is to use the
FWTools installer, which can be downloaded from the following site:

http://fwtools.maptools.org
If you are running Mac OS X, you can find a complete installer for GDAL at:

http://www.kyngchaos.com/software/frameworks

After installing GDAL, you can check that it works by typing import osgeo into the
Python command prompt; if the Python command prompt reappears with no error
message, GDAL was successfully installed and you are all set to go:

>>> import osgeo

>>>

Now that we have some data to work with, let's take a look at it. You can either type
the following directly into the command prompt, or else save it as a Python script so
you can run it whenever you wish (let's call this analyze.py):

import osgeo.ogr
shapefile = osgeo.ogr.Open("tl 2009 us_ state.shp")

numLayers = shapefile.GetLayerCount ()

°

print "Shapefile contains %d layers" % numLayers
print
for layerNum in range (numLayers) :

layer = shapefile.GetLayer (layerNum)

spatialRef = layer.GetSpatialRef () .ExportToProj4 ()

numFeatures = layer.GetFeatureCount ()

print "Layer %d has spatial reference %s" % (layerNum, spatialRef)
print "Layer %d has %d features:" % (layerNum, numFeatures)

print

for featureNum in range (numFeatures) :
feature = layer.GetFeature (featureNum)
featureName = feature.GetField ("NAME")

°

print "Feature %d has name %$s" % (featureNum, featureName)
This gives us a quick summary of how the Shapefile's data is structured:
Shapefile contains 1 layers

Layer 0 has spatial reference +proj=longlat +ellps=GRS80 +datum=NAD83
+no defs

Layer 0 has 56 features:

Feature 0 has name American Samoa

[40]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

2635 State Street, Apt T1, Santa Barbara, 93105

PUBLISHING

Chapter 2

Feature 1 has name Nevada
Feature 2 has name Arizona

Feature 3 has name Wisconsin

Feature 53 has name California
Feature 54 has name Ohio

Feature 55 has name Texas

This shows us that the data we downloaded consists of one layer, with 56 individual
features corresponding to the various states and protectorates in the U.S. It also tells
us the "spatial reference" for this layer, which tells us that the coordinates are stored as
latitude and longitude values, using the GRS80 ellipsoid and the NADS83 datum.

As you can see from the above example, using GDAL to extract data from Shapefiles
is quite straightforward. Let's continue with another example. This time, we'll look at
the details for feature 2, Arizona:

import osgeo.ogr

shapefile = osgeo.ogr.Open("tl 2009 us_ state.shp")
layer = shapefile.GetLayer (0)

feature = layer.GetFeature (2)

print "Feature 2 has the following attributes:"
print

attributes = feature.items ()

for key,value in attributes.items() :
print " %s = %s" % (key, value)
print

geometry = feature.GetGeometryRef ()

geometryName = geometry.GetGeometryName ()

°

print "Feature's geometry data consists of a %$s" % geometryName
Running this produces the following;:
Feature 2 has the following attributes:

DIVISION 8

INTPTLAT = +34.2099643

NAME = Arizona
STUSPS = AZ
FUNCSTAT = A
REGION = 4

[41]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

LSAD = 00

AWATER = 1026257344.0
STATENS = 01779777
MTFCC = G4000

INTPTLON = -111.6024010
STATEFP = 04

ALAND = 294207737677.0

Feature's geometry data consists of a POLYGON

The meaning of the various attributes is described on the U.S. Census Bureau's
website, but what interests us right now is the feature's geometry. A Geometry
object is a complex structure that holds some geo-spatial data, often using nested
Geometry objects to reflect the way the geo-spatial data is organized. So far, we've
discovered that Arizona's geometry consists of a polygon. Let's now take a closer
look at this polygon:

import osgeo.ogr

def analyzeGeometry (geometry, indent=0):
s = [l
s.append (" " * indent)
s .append (geometry.GetGeometryName ())
if geometry.GetPointCount () > O0:
s.append (" with %d data points" % geometry.GetPointCount ())
if geometry.GetGeometryCount () > 0:

s.append (" containing:")
print "".join(s)

for i in range (geometry.GetGeometryCount ()) :
analyzeGeometry (geometry.GetGeometryRef (i), indent+1)

shapefile = osgeo.ogr.Open("tl 2009 us state.shp")
layer = shapefile.GetLayer (0)

feature = layer.GetFeature(2)

geometry = feature.GetGeometryRef ()

analyzeGeometry (geometry)
The analyzeGeometry () function gives a useful idea of how the geometry
has been structured:
POLYGON containing:
LINEARRING with 10168 data points
In GDAL (or more specifically the OGR Simple Feature library we are using here),

polygons are defined as a single outer "ring" with optional inner rings that define
"holes" in the polygon (for example, to show the outline of a lake).

[42]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

Arizona is a relatively simple feature in that it consists of only one polygon. If we ran
the same program over California (feature 53 in our Shapefile), the output would be
somewhat more complicated:

MULTIPOLYGON containing:

POLYGON containing:

LINEARRING with 93 data points
POLYGON containing:

LINEARRING with 77 data points
POLYGON containing:

LINEARRING with 191 data points
POLYGON containing:

LINEARRING with 152 data points
POLYGON containing:

LINEARRING with 393 data points
POLYGON containing:

LINEARRING with 121 data points
POLYGON containing:

LINEARRING with 10261 data points

As you can see, California is made up of seven distinct polygons, each defined by a
single linear ring. This is because California is on the coast, and includes six outlying
islands as well as the main inland body of the state.

Let's finish this analysis of the U.S. state Shapefile by answering a simple

question: what is the distance from the northernmost point to the southernmost point
in California? There are various ways we could answer this question, but for now
we'll do it by hand. Let's start by identifying the northernmost and southernmost
points in California:

import osgeo.ogr

def findPoints (geometry, results):
for i in range (geometry.GetPointCount ()) :
X,y,Zz = geometry.GetPoint (i)

if results['north'] == None or results['north'][1l] < y:
results['north'l = (x,y)

if results['south'] == None or results['south'][1l] > y:
results['south'] = (x,y)

for i in range (geometry.GetGeometryCount ()) :
findPoints (geometry.GetGeometryRef (1), results)

shapefile = osgeo.ogr.Open("tl 2009 us_ state.shp")

[43]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

layer = shapefile.GetLayer (0)
feature = layer.GetFeature (53)
geometry = feature.GetGeometryRef ()

results = {'north' : None,
'south' : None}

findPoints (geometry, results)

print "Northernmost point is (%0.4f, %0.4f)" results['north']

print "Southernmost point is (%0.4f, %0.4f)" results['south']

The findPoints () function recursively scans through a geometry, extracting the
individual points and identifying the points with the highest and lowest y (latitude)
values, which are then stored in the results dictionary so that the main program
can use it.

As you can see, GDAL makes it easy to work with the complex Geometry data
structure. The code does require recursion, but is still trivial compared with trying to
read the data directly. If you run the above program, the following will be displayed:

Northernmost point is (-122.3782, 42.0095)
Southernmost point is (-117.2049, 32.5288)

Now that we have these two points, we next want to calculate the distance between
them. As described earlier, we have to use a great circle distance calculation here
to allow for the curvature of the Earth's surface. We'll do this manually, using the
Haversine formula:

import math

latl = 42.0095
longl = -122.3782

lat2 = 32.5288
long2 = -117.2049

rLatl = math.radians(latl)
rLongl = math.radians (longl)
rLat2 = math.radians(lat2)
rLong2 = math.radians (long2)

dLat = rLat2 - rLatl

dLong = rLong2 - rLongl

a = math.sin(dLat/2)**2 + math.cos(rLatl) * math.cos(rLat2) \
* math.sin (dLong/2) **2

c = 2 * math.atan2 (math.sqgrt(a), math.sqrt(l-a))

distance = 6371 * c

print "Great circle distance is %0.0f kilometers" % distance

[44]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 2

Don't worry about the complex maths involved here; basically, we are converting
the latitude and longitude values to radians, calculating the difference in latitude/
longitude values between the two points, and then passing the results through some
trigonometric functions to obtain the great circle distance. The value of 6371 is the
radius of the Earth in kilometers.

More details about the Haversine formula and how it is used in the above example
can be found at http://mathforum.org/library/drmath/view/51879.html.

If you run the above program, your computer will tell you the distance from the
northernmost point to the southernmost point in California:
Great circle distance is 1149 kilometers

There are, of course, other ways of calculating this. You wouldn't normally type

the Haversine formula directly into your program as there are libraries that will do
this for you. But we deliberately did the calculation this way to show just how it can
be done.

If you would like to explore this further, you might like to try writing programs to
calculate the following;:
e The easternmost and westernmost points in California.

e The midpoint in California. Hint: you can calculate the midpoint's longitude
by taking the average of the easternmost and westernmost longitude.

e The midpoint in Arizona.
e The distance between the middle of California and the middle of Arizona.
As you can see, working with GIS data manually isn't too troublesome. While the

data structures and maths involved can be rather complex, using tools such as GDAL
make your data accessible and easy to work with.

[45]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

[] 2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

GIS

Summary

In this chapter, we discussed many of the core concepts that underlie GIS
development, looked briefly at the history of GIS, examined some of the more
common GIS data formats, and got our hands dirty exploring U.S. state maps
downloaded from the U.S. Census Bureau website. We have seen that:

e Locations are often, but not always, represented using coordinates.

e Calculating the distance between two points requires you to take into
account the curvature of the Earth's surface.

¢ You must be aware of the units used in geo-spatial data.

e Map projections represent the three-dimensional shape of the Earth's surface
as a two-dimensional map.

e There are three main classes of map projections: cylindrical, conic, and
azimuthal.

e Datums are mathematical models of the Earth's shape.

e The three most common datums in use are called NAD 27, NAD 83, and
WGS 84.

e Coordinate systems describe how coordinates relate to a given point on the
Earth's surface.

e Unprojected coordinate systems directly represent points on the Earth's
surface.

e Projected coordinate systems use a map projection to represent the Earth as a
two-dimensional Cartesian plane, onto which coordinates are then placed.

¢ Geo-spatial data can represent shapes in the form of points, linestrings, and
polygons.

e There are a number of standard GIS data formats you might encounter. Some
data formats work with raster data, while others use vector data.

e How to download map data from the U.S. Census site.

e How to install and run GDAL.

¢ How to analyze downloaded Shapefile data.

e How Shapefile data is organized into geometries.

e How to use the Haversine formula to manually calculate the great circle

distance between two points.

In the next chapter, we will look in more detail at the various Python libraries that
can be used for working with geo-spatial data.

[46]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Libraries for
Geo-Spatial Development

This chapter examines a number of libraries and other tools that can be used for
geo-spatial development in Python.

More specifically, we will cover:

e Python libraries for reading and writing geo-spatial data
e Python libraries for dealing with map projections

e Libraries for analyzing and manipulating geo-spatial data directly within
your Python programs

e Tools for visualizing geo-spatial data
Note that there are two types of geo-spatial tools that are not discussed in this

chapter: geo-spatial databases and geo-spatial web toolkits. Both of these will be
examined in detail later in this book.

Reading and writing geo-spatial data

While you could in theory write your own parser to read a particular geo-spatial data
format, it is much easier to use an existing Python library to do this. We will look at
two popular libraries for reading and writing geo-spatial data: GDAL and OGR.

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Libraries for Geo-Spatial Development

GDAL/OGR

Unfortunately, the naming of these two libraries is rather confusing. GDAL, which
stands for Geospatial Data Abstraction Library, was originally just a library for
working with raster geo-spatial data, while the separate OGR library was intended to
work with vector data. However, the two libraries are now partially merged, and are
generally downloaded and installed together under the combined name of GDAL.
To avoid confusion, we will call this combined library GDAL/OGR and use GDAL
to refer to just the raster translation library.

A default installation of GDAL supports reading 81 different raster file formats and
writing to 41 different formats. OGR by default supports reading 27 different vector
file formats and writing to 15 formats. This makes GDAL/OGR one of the most
powerful geo-spatial data translators available, and certainly the most useful
freely-available library for reading and writing geo-spatial data.

GDAL design

GDAL uses the following data model for describing raster geo-spatial data:

Dataset

Raster Band | Raster Size |

Band Raster Size |

| Georeferencing Transform |

| Coordinate System |

Color Table |

| Metadata |

|
| Band Metadata |
|
|

Raster Data | -

Let's take a look at the various parts of this model:

1. A dataset holds all the raster data, in the form of a collection of raster
"bands", and information that is common to all these bands. A dataset
normally represents the contents of a single file.

2. Araster band represents a band, channel, or layer within the image. For
example, RGB image data would normally have separate bands for the red,
green, and blue components of the image.

[48]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 3

3. The raster size specifies the overall width of the image in pixels and the
overall height of the image in lines.

4. The georeferencing transform converts from (x,y) raster coordinates into
georeferenced coordinates — that is, coordinates on the surface of the Earth.
There are two types of georeferencing transforms supported by GDAL: affine
transformations and ground control points.

An affine transformation is a mathematical formula allowing the following
operations to be applied to the raster data:

_b
X offset Y offset
_—
X scale Y scale
T
Horizontal shear Vertical shear

More than one of these operations can be applied at once; this allows you
to perform sophisticated transforms such as rotations.

[49]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Libraries for Geo-Spatial Development

Ground Control Points (GCPs) relate one or more positions within the raster
to their equivalent georeferenced coordinates, as shown in the following figure:

\'
\

Note that GDAL does not translate coordinates using GCPs —that is left up

to the application, and generally involves complex mathematical functions to
perform the transformation.

5. The coordinate system describes the georeferenced coordinates produced by
the georeferencing transform. The coordinate system includes the projection
and datum as well as the units and scale used by the raster data.

6. The metadata contains additional information about the dataset as a whole.
Each raster band contains (among other things):

1. The band raster size. This is the size (number of pixels across and number of
lines high) for the data within the band. This may be the same as the raster
size for the overall dataset, in which case the dataset is at full resolution, or
the band's data may need to be scaled to match the dataset.

2. Some band metadata providing extra information specific to this band.

3. A color table describing how pixel values are translated into colors.

4. The raster data itself.

GDAL provides a number of drivers that allow you to read (and sometimes write)
various types of raster geo-spatial data. When reading a file, GDAL selects a suitable
driver automatically based on the type of data; when writing, you first select the
driver and then tell the driver to create the new dataset you want to write to.

GDAL example code

A Digital Elevation Model (DEM) file contains height values. In the following
example program, we use GDAL to calculate the average of the height values
contained in a sample DEM file:

[50]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 3

from osgeo import gdal,gdalconst
import struct

dataset = gdal.Open ("DEM.dat")
band = dataset.GetRasterBand (1)

fmt = "<" + ("h" * band.XSize)
totHeight = 0

for y in range (band.YSize) :

scanline band.ReadRaster (0, y, band.XSize, 1, band.XSize, 1,

band.DataType)
values = struct.unpack (fmt, scanline)

for value in values:
totHeight = totHeight + value

average = totHeight / (band.XSize * band.YSize)
print "Average height =", average

As you can see, this program obtains the single raster band from the DEM file,

and then reads through it one scanline at a time. We then use the struct standard
Python library module to read the individual values out of the scanline. Each value
corresponds to the height of that point, in meters.

OGR design

OGR uses the following model for working with vector-based geo-spatial data:

Datasource

Layer

Spatial Reference

Feature

Geometry

Attribute Geometry

field = value

[51]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011

2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Libraries for Geo-Spatial Development

Let's take a look at this design in more detail:

1. The datasource represents the file you are working with—though it doesn't
have to be a file. It could just as easily be a URL or some other source of data.

2. The datasource has one or more layers, representing sets of related data. For
example, a single datasource representing a country may contain a terrain
layer, a contour lines layer, a roads layer, and a city boundaries layer. Other
datasources may consist of just one layer. Each layer has a spatial reference
and a list of features.

3. The spatial reference specifies the projection and datum used by the layer's
data.

4. A feature corresponds to some significant element within the layer. For
example, a feature might represent a state, a city, a road, an island, and so on.
Each feature has a list of attributes and a geometry.

5. The attributes provide additional meta-information about the feature.
For example, an attribute might provide the name for a city feature, its
population, or the feature's unique ID used to retrieve additional information
about the feature from an external database.

6. Finally, the geometry describes the physical shape or location of the feature.
Geometries are recursive data structures that can themselves contain sub-
geometries —for example, a country feature might consist of a geometry that
encompasses several islands, each represented by a sub-geometry within the
main "country" geometry.

The Geometry design within OGR is based on the Open Geospatial
Consortium's Simple Features model for representing geo-spatial geometries. For
more information, see http://www.opengeospatial .org/standards/sfa.

Like GDAL, OGR also provides a number of drivers that allow you to read (and
sometimes write) various types of vector-based geo-spatial data. When reading a file,
OGR selects a suitable driver automatically; when writing, you first select the driver
and then tell the driver to create the new datasource to write to.

OGR example code

The following example program uses OGR to read through the contents of a
Shapefile, printing out the value of the NAME attribute for each feature, along
with the geometry type:

from osgeo import ogr

shapefile = ogr.Open ("TM WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

[52]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 3

for i in range(layer.GetFeatureCount ()) :
feature = layer.GetFeature (i)
name = feature.GetField("NAME")
geometry = feature.GetGeometryRef ()
print i, name, geometry.GetGeometryName ()

Documentation

GDAL and OGR are well-documented, but with a catch for Python programmers.
The GDAL/OGR library and associated command-line tools are all written in C

and C++. Bindings are available that allow access from a variety of other languages,
including Python, but the documentation is all written for the C++ version of the
libraries. This can make reading the documentation rather challenging —not only
are all the method signatures written in C++, but the Python bindings have changed
many of the method and class names to make them more "pythonic".

Fortunately, the Python libraries are largely self-documenting, thanks to all the
docstrings embedded in the Python bindings themselves. This means you can
explore the documentation using tools such as Python's built-in pydoc utility, which
can be run from the command line like this:

pydoc -g osgeo

This will open up a GUI window allowing you to read the documentation using a web
browser. Alternatively, if you want to find out about a single method or class, you can
use Python's built-in help () command from the Python command line, like this:

>>> import osgeo.ogr

>>> help(osgeo.ogr.Datasource.CopylLayer)

Not all the methods are documented, so you may need to refer to the C++ docs on

the GDAL website for more information. Some of the docstrings present are copied
directly from the C++ documentation —but, in general, the documentation for GDAL/
OGR is excellent, and should allow you to quickly come up to speed using this library.

Availability
GDAL/OGR runs on modern Unix machines, including Linux and Mac OS X as well
as most versions of Microsoft Windows. The main website for GDAL can be found at:

http://gdal.org

And the main website for OGR is http://gdal.org/ogr

[53]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Libraries for Geo-Spatial Development

To download GDAL/OGR, follow the Downloads link on the main GDAL website.
Windows users may find the "FWTools" package useful as it provides a wide range
of geo-spatial software for win32 machines, including GDAL/OGR and its Python
bindings. FWTools can be found at:

http://fwtools.maptools.org
For those running Mac OS X, pre-built binaries for GDAL/OGR can be obtained from:
http://www.kyngchaos.com/software/frameworks

Make sure that you install GDAL version 1.7 or later as you will need this version to
work through the examples in this book.

Being an open source package, the complete source code for GDAL/OGR is available
from the website, so you can compile it yourself. Most people, however, will simply
want to use a pre-built binary version.

Dealing with projections

One of the challenges of working with geo-spatial data is that geodetic locations
(points on the Earth's surface) are mapped into a two-dimensional cartesian plane
using a cartographic projection. We looked at projections in the previous chapter —
whenever you have some geo-spatial data, you need to know which projection that
data uses. You also need to know the datum (model of the Earth's shape) assumed by
the data.

A common challenge when dealing with geo-spatial data is that you have to convert
data from one projection/datum to another. Fortunately, there is a Python library
that makes this task easy: pyproj.

PYproj

pyproj is a Python wrapper around another library called PRO]J.4. PROJ .4 is an
abbreviation for version 4 of the PROJ library. PROJ was originally written by the
U.S. Geological Survey for dealing with map projections, and has been widely used
by geo-spatial software for many years. The pyproj library makes it possible to
access the functionality of PROJ.4 from within your Python programs.

Design

The pyproj library consists of the following pieces:

[54]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 3

pyproj
Proj Geod
N A
PROJ.4

pyproj consists of just two classes: Proj and Geod. Proj converts from longitude and
latitude values to native map (x,y) coordinates and vice versa. Geod performs various
Great Circle distance and angle calculations. Both are built on top of the PRO]J.4
library. Let's take a closer look at these two classes.

Proj
Proj is a cartographic transformation class, allowing you to convert geographic

coordinates (latitude and longitude values) into cartographic coordinates (x, y
values, by default in meters) and vice versa.

When you create a new proj instance, you specify the projection, datum, and
other values used to describe how the projection is to be done. For example, to
use the "Transverse Mercator" projection and the wGss4 ellipsoid, you would
do the following:

projection = pyproj.Proj (proj='tmerc', ellps='WGS84')

Once you have created a Proj instance, you can use it to convert a latitude and
longitude to an (x,y) coordinate using the given projection. You can also use it to
do an inverse projection —that is, converting from an (x,y) coordinate back into a
latitude and longitude value again.

The helpful transform() function can be used to directly convert coordinates from
one projection to another. You simply provide the starting coordinates, the Proj object
that describes the starting coordinates' projection, and the desired ending projection.
This can be very useful when converting coordinates, either singly or en masse.

[55]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Python Libraries for Geo-Spatial Development

Geod

Geod is a geodetic computation class that allows you to perform various Great Circle
calculations. We looked at Great Circle calculations earlier when considering how to
accurately calculate the distance between two points on the Earth's surface. The Geod
class, however, can do more than this:

1. The £wd () method takes a starting point, an azimuth (angular direction) and
a distance, and returns the ending point and the back azimuth (the angle
from the end point back to the start point again):

Back Azimuth = -150°

End Point = 38.167405°S, 176.234466°E

Start Point = 38.167445°S, 176.234436°E

2. The inv () method takes two coordinates and returns the forward and back
azimuth as well as the distance between them:

Back Azimuth = -150°

End Point = 38.167405°S, 176.234466°E

Start Point = 38.167445°S, 176.234436°E

3. The npts () method calculates the coordinates of a number of points spaced
equidistantly along a geodesic line running from the start to the end point:

[56]

This material is copyright and is licensed for the sole use by Chris Macdonald on 31st January 2011
2635 State Street, Apt T1, Santa Barbara, 93105
PUBLISHING

Chapter 3

/. End Point = 38.167405°S, 176.234466°E

/‘ Mumber of points =5

®
.

_,r‘r
‘ Start Point = 38.167445°S, 176.234436°E

When you create a new Geod object, you specify the ellipsoid to use when
performing the geodetic calculations. The ellipsoid can be selected from a number of
predefined ellipsoids, or you can enter the parameters for the ellipsoid (equatorial
radius, polar radius, and so on) directly.

Example code

The following example starts with a location specified using UTM zone 17
coordinates. Using two Proj objects to define the UTM Zone 17 and lat/long
projections, it translates this location's coordinates into latitude and longitude values:

import pyproj

UTM X = 565718.523517
UTM_Y = 3980998.9244
srcProj = pyproj.Proj (proj="utm", zone="11",

ellps="clrk66", units="m")

dstProj = pyproj.Proj (proj='longlat', ellps='WGS84',
datum="'WGS84 ")

long, lat = pyproj.transform(srcProj, dstProj, UTM X, UTM Y)

print "UTM zone 17 coordinate (%0.4f, %0.4f) = %$0.4f, %0.4f