
34 ArcUser April–June 2005 www.esri.com

Scripting in ESRI software has historically followed two models. The
fi rst model is demonstrated by ARC Macro Language (AML). This
model shows its PrimOS heritage. Output is piped to fi les, data han-
dling is fi le system and directory based, and the code is very linear in
nature.
 The second model is exemplifi ed by Avenue that shows its Smalltalk
origins. Object.request is the name of the game: things donʼt have to be
linear, I/O is sometimes a struggle, and integrating with other programs
is a mixed bag. Both are custom languages that have their own dark,
nasty corners.
 With the introduction of ArcGIS 8, your scripting-based view of the
world was turned upside down. Interface-based programming required
you to use a “real” programming language, such as C++ or Visual Ba-
sic, to access the functionality of ArcGIS 8. There was no script for
automating a series of tasks. Instead, you had to write executables, nav-
igate a complex tree of interfaces and objects to fi nd the required tools,
and compile DLLs and type libraries to expose custom functionality.
 With the introduction of ArcGIS 9, ESRI is again providing access
to its software through scripting. ESRI realized that many of its users
donʼt want or need to be programmers but would still like to have tools
to solve problems they encounter. These tools include nice, consistent
GUIs; scriptable objects; and the nuts-and-bolts programming tools
necessary for customization.
 To fulfi ll this need, ESRI supports a variety of scripting languages
using ArcObjects—starting with the geoprocessing framework. Python,
one of the languages supported, is an Open Source, interpreted, dynami-
cally typed, object-oriented scripting language. Python is included with
ArcGIS 9 and is installed along with the other components of a typical
installation. This article gives you an overview of what is available in
the Python universe to help you with GIS programming and integrating
ESRI tools.

Introducing Python
Python was fi rst released in 1991 by Guido van Rossum at Centrum
voor Wiskunde en Informatica (CWI) in the Netherlands. Yes, it is
named after Monty Pythonʼs Flying Circus, which Guido loves. Its
name also means that references from the movies and television show
are sprinkled throughout examples, code, and comments. Many of
Pythonʼs features have been cherry-picked from other languages such
as ABC, Modula, LISP, and Haskel. Some of these features include
advanced things, such as metaclasses, generators, and list comprehen-
sions, but most programmers will only need Pythonʼs basic types such
as the lists, dictionaries, and strings.
 Although it is almost 13 years old, Python is currently at release
2.3. This refl ects the design philosophy of the Benevolent Dictator for
Life (Guido) and the group of programmers that continue to improve
Python. They strive for incremental change and attempt to preserve
backwards compatibility, but when necessary, they redesign areas seen
in hindsight as mistakes.

By Howard Butler, Iowa State University

The Design of Python
Python is designed to be an easy-to-use, easy-to-learn dynamic script-
ing language. What this means for the user is that there is no compiling
(the language is interpreted and compiled on the fl y), it is interactive
(you can bring up the interpreter prompt much like a shell and begin
coding right away), and it allows users to learn its many layers of im-
plementation at their own pace.
 The design philosophy of Python was most clearly described by Tim
Peters, one of the lead developers of Python, in “The Zen of Python.” Py-
thon programmers can use these maxims to help guide them through the
language and help them write code that could be considered pythonic.

Python and GIS
Python provides many opportunities for integration within GIS com-
puting systems. Cross-platform capabilities and ease of integration with
other languages (C, C++, FORTRAN, and Java) mean that Python is
most successful in gluing systems together. Because of the fl uid lan-

Python Universe

The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules,
Although practicality beats purity.
Errors should never pass silently,
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way
 to do it.
Although that way may not be obvious at fi rst unless you’re
 Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a
 good idea.
Namespaces are one honking great idea—let’s do more
 of those!

for ESRI Users

A Guide to the

Developer’s Corner

www.esri.com ArcUser April–June 2005 35

Continued on page 36

guage design, the development of large-scale applications is also easily
supported. Many libraries and tools have already been developed for
working with GIS data in Python. The basics are covered, including the
manipulation of shapefiles, grids, and images, as well as more sophisti-
cated stuff such as scripting ArcSDE and interaction with Web services
and databases.

Vector Formats
A Python wrapper of the Open Source library Shapelib (shapelib.map-
tools.org) called pyshapelib is available for working with shapefiles.
You can download it at www.hobu.biz/software/pyshapelib. It provides
access to the individual vertices of the shape, access to the DBF file,
and simple shape indexing. This library is useful if you want to manipu-
late the raw geometry of a shapefile or pan through the DBF file to get
to specific records.
 A Python wrapper of the Open Source library (gdal.maptools.org/
ogr/) called OGR is available for working with vector formats other
than shapefiles. These include MapInfo, ArcInfo coverage, PostGIS,
Oracle Spatial, TIGER, SDTS, OPeNDAP, DGN, and Microstation
DGN formats. OGR is part of the Geospatial Data Abstraction Library
(GDAL), and it can be downloaded with the GDAL distribution (hobu.
stat.iastate.edu/gdal-1.2.0win32.exe).

Using Python with Grid Data
A Python wrapper of the Open Source library GDAL (gdal.maptools.
org) is available for working with ArcInfo grids. Many raster formats
are supported by GDAL including JPEG 2000, BSP, United States
Geological Survey digital elevation model, military elevation data,
Enhanced Compressed Wavelet (ECW), Geographical Resources

>>> import gdal
>>> gd =
gdal.gdal.Open(rʼE:\gis\US_Elevation\usdem_2k\w001001.adfʼ)
>>> . = gd.ReadAsArray()
>>> avg = Numeric.average(Numeric.ravel(array))
>>> avg
-0.0071967281963325313

Listing 1: Finding the average value of a grid across rows and columns

import Projection
albers = [“proj=aea”,
“ellps=GRS80”,
“datum=NAD83”,
“lat_1=29.5”,
“lat_2=45.5”,
“lat_0=23.0”,
“lon_0=-96.0”,
“x_0=0.0”,
“y_0=0.0”]
p2 = Projection.Projection(albers)
print ʻ----------Albers--------------ʼ
print ʻLocation: -93.00W, 42.00Nʼ
print “Forward: “, p2.Forward(-93.00, 42.00)
print “Inverse: “, p2.Inverse(0.0, 0.0)

Listing 2: Using Python to project data.

Projections
A Python wrapper from the Open Source library Proj.4 (proj.maptools.
org) called py-Projection is available from Hobu GIS Consulting (hobu.
biz/index_html/software/pyprojection/) for reprojecting data. Although
it uses the European Petroleum Survey Group (EPSG) code system, you
can define your own projections by using the raw parameters. Simply
define the current projection, the x and y coordinates, and call a method
that transforms them to the desired projection as shown in Listing 2.

Scripting ArcSDE
I developed a Python wrapper of the ESRI SDE C API called PySDE
(hobu.stat.iastate.edu/pysde) that is available for writing scripts that

manipulate ArcSDE. Almost all of the SDE C API is wrapped and has
corresponding methods in Python that you can call. PySDE is Open
Source, but you will need a licensed copy of the SDE C API to be able
to use it. I developed PySDE because I felt there was a need to have the
ability to prototype and script the ArcSDE engine. I wanted lean scripts

Analysis Support System (GRASS), TIFF/GeoTIFF, network Common
Data Form (NetCDF), ERDAS IMAGINE, and Spatial Data Transfer
Standard (SDTS). The Python library for Windows can be downloaded
from hobu.stat.iastate.edu/gdal-1.2.0win32.exe. Many other formats,
not listed here, are available.
 GDAL, in combination with Numeric Python, gives you the flex-
ibility to write map algebra operations using any format that suits your
needs. For example, you could write a process that resided on a Web
server, downloaded data with an Open Geospatial Consortium (OGC)
Web Coverage Service, processed the data using some algebra, and de-
livered an image to the Web browser. The possibilities are endless once
you have the ability to divorce data processing from data display.
 Say you wanted to find the average value of a grid across both the
rows and the columns. This is integer data in ArcInfo binary format.
Using the interactive Python window, first import the GDAL library.
Then tell GDAL where to find the ArcInfo coverage data file (.adf) for
the grid that you want to open, using Pythonʼs raw mode to input the
string. Pass the contents of the grid into a Numeric Python array and use
Numericʼs processing methods to produce the average. See Listing 1
for the code that performs these operations.

36 ArcUser April–June 2005 www.esri.com

that ran on UNIX-like platforms without requiring ArcGIS to process
the data. I have used PySDE to develop a specialized geometry algebra
engine, administration scripts (drop this table, clean up log files, copy
this data), and many data manipulation scripts. Another advantage of
programming with PySDE is the immediacy of the Python interactive
window. You can type in commands and see their effect in real time.
This is a real time-saver when navigating complex hierarchies such as
the SDE C API.

A Guide to the Python Universe for ESRI Users
Continued from page 35

>>> from pyTS import TerraImage
>>> from pyTS import pyTerra
>>> apt = TerraImage.point(42.00, -93.00)
>>> drg = pyTerra.GetAreaFromPt(apt, ʻTopoʼ,ʼScale64mʼ, 1,
1)
>>> doq = pyTerra.GetAreaFromPt(apt, ʻPhotoʼ,ʼScale64mʼ,
1, 1)
>>> drg.Center.TileMeta.Capture
ʻ1976-07-01T00:00:00.0000000-07:00ʼ
>>> doq.Center.TileMeta.Capture
ʻ1994-04-18T00:00:00.0000000-07:00ʼ

Listing 3: Getting the DOQ and the DRG map sheet dates from
TerraServer.

from the application side of the fence. Python provides many tools for
working with Web services. XML-RPC is built right into the language,
and many libraries are available for working with SOAP (pywebsvcs.
sf.net) and REST.

pyTerra
One GIS Web service that is quite useful is the TerraService SOAP API.
I have developed a Python wrapper called pyTerra (hobu.stat.iastate.
edu/pyTerra) for easily interacting with the Microsoft TerraServer.
 For example, if you would like to find the digital orthophoto quad-
rangle (DOQ) date of a specific longitude and latitude, one method
would be to locate Federal Geographic Data Committee metadata, open
it in a reader such as ArcCatalog, and record its value. While this meth-
od works, it is not scalable, and not practical if you have to look up the
image dates for ten or fifteen thousand points. A program would be the
only reasonable way to do it.
 Fortunately, TerraServer stored the imagery acquisition dates along
with the image data. You can easily use the Web services API that py-
Terra provides to quickly access this information. The example in List-
ing 2 that gets the DOQ and the digital raster graphic (DRG) map sheet
dates from TerraServer.
 From this trace back of the Python Interactive Window, you can see
that the DRG and DOQ dates are 1976 and 1994, respectively. These
strings can be parsed into dates and inserted in a database, or the date
information can be captured and used to burn a map image using the
Python Imaging Library (PIL). Python makes it easy to work with Web
services. Tools such as pyTerra can do much of the heavy lifting for
you.

Conclusion
Python can provide you with a complete set of tools for your GIS tool-
box. In combination with ArcGIS, the possibilities are endless. New
technologies, such as Web services, are widely supported in Python.
There are many online and paper resources to help you when develop-
ing Python scripts. A companion to this article (with links to sources) is
available from my Web site at hobu.biz/software/python_guide_esri/.

Howard Butler
Center for Survey Statistics and Methodology
Iowa State University
Ames, Iowa 50010

Web GIS and Python
Python is perfectly suited for Web development. Web development
with Python is often much faster than technologies such as Java or
.NET. There are many tools available for doing Web development
using Python such as Zope (www.zope.org), an application server;
MapServer (mapserver.gis.umn.edu) a map-rendering server; and
Twisted (twistedmatrix.com/products/download), a network protocol
layer. Descriptions of other common Open Source tools for Web pro-
gramming in Python with respect to GIS follow.

Web Services
Web services using Simple Object Access Protocol (SOAP), XML-
remote procedure call (RPC), and Representational State Transfer
(REST) clients are all the rage these days. Web services allow you to
encode an XML-structured request to a server and have it respond back
with XML-structured data. This architecture allows you to more eas-
ily separate the data storage and management portion of your system

Developer’s Corner

www.esri.com ArcUser April–June 2005 37

Resources for Learning Python

Resource URL

Python Newbies Page www.python.org/doc/Newbies.html

Python How-Tos py-howto.sourceforge.net/

O’Reilly Python DevCenter www.onlamp.com/python/

Daily Python www.pythonware.com/daily/

Python Beginners’ Mistakes zephyrfalcon.org/labs/beginners_mistakes.html

Dive Into Python diveintopython.org/

Thinking in Python www.mindview.net/Books/TIPython

Data Structures and Algorithms with Object-Oriented Design
Patterns in Python

www.brpreiss.com/books/opus7/

Many available books give a general background to Python programming.
Some of the best are from O’Reilly, but others from New Riders and Apress
also supply a good introduction or cover specialized topics.
 —Howard Butler

Learning Python, 2nd Edition
By Mark Lutz and David Ascher
At this point, Learning Python probably supplies the most complete book for
an introduction to Python, especially for users coming from languages such
as Visual Basic and Avenue. The examples and descriptions in this book are
precise, relevant, and clear. I find myself going back to this book frequently,
even though I have been writing Python since 1999. It teaches the basics well
and shows you how to write pythonic code.
O’Reilly, 2003, 552 pp., ISBN: 0596002815

Python Essential Reference, 2nd Edition
By David M. Beazley
Python Essential Reference is truly a reference book. If you are already a pro-
ficient coder in another language, I would choose this book over Learning
Python. It has everything you need and is very terse. A new edition should be
in the works soon. This book mainly references Python 2.1—the version that
ships with ArcGIS 9. Sams, 2001, 416 pp., ISBN: 0735710910

Programming Python, 2nd Edition
By Mark Lutz
Programming Python aspires to be the Python equivalent of the camel book
in the Perl world (i.e., Programming Perl, also from O’Reilly). The updated sec-
ond edition ballooned to more than 1,200 pages and comes with a CD–ROM.
There are plenty of choice bits to devour. Of all the books listed, it supplies
the best coverage of using the Python C API (which shouldn’t go out of date
too quickly now that it has been updated for Python 2.2). My criticisms of this
expensive book would be that it is too verbose, is targeted too clearly at UNIX
programmers, and uses larger example applications. Also, because it is so
large, holding the book in your lap is problematic. I mainly use it as a Python C
API reference and look to other books when I need help with specific things.
O’Reilly, 2001, 1,292 pp., ISBN: 0596000855

Dive Into Python
By Mark Pilgrim
Dive Into Python is an excellent book for those who already have some
programming experience, and it approaches a wide range of topics at an
intermediate level. This book provides good coverage of object-oriented
programming in Python, unit testing, Web services, regular expressions, and
performance testing. The entire text of this book is available online at www.
diveintopython.org/. Apress, 2004, 4,113 pp., ISBN: 1590593561

Python in a Nutshell
By Alex Martelli
Python in a Nutshell is likely the most up-to-date, complete, and most poetic
Python book available. I had the pleasure of eating lunch with the author,
Alex Martelli, at the 10th Annual Python Conference. He is a very articulate
speaker, and this carries over to his writing. This book covers the breadth
of Python. Each chapter covers a separate problem domain and gives an
overview (with great detail) of what is possible with Python. O’Reilly, 2003,
600 pp., ISBN: 0596001886

Python Cookbook
By Alex Martelli and David Ascher
The Python Cookbook was written by users of Python. A Web site, outlined
in an O’Reilly Network article, was developed. Users submitted recipes that
showed how they had solved problems with Python. The authors took the
recipes, organized them into chapters, and made them coherent. There are
some real gems here, especially in the algorithms chapter edited by Tim
Peters. It also gives a good overview of how people express problems in Py-
thon, how they solve them, and tips that make life easier. The book conveys
the community of Python as well as its problems. I recommend this book as
a third or fourth Python book after you’ve covered the basics. O’Reilly, 2002,
606 pp., ISBN: 0596001673

Python Programming on Win32
By Mark Hammond and Andy Robinson
Those using the geoprocessing scripting engine in ArcGIS 9 will find Python
Programming on Win32 useful. It almost exclusively covers using the authors’
Python COM extensions for Windows and the general usage of COM. It also
describes how to script using the IDispatch interface exposed by Excel and
how to work at the systems level with users, groups, and files. I also expect a
second edition of this book in the near future because the COM extensions
for Python have changed substantially in the years since this book was writ-
ten. O’Reilly, 2000, 669 pp., ISBN: 1565926218

Jython Essentials
By Samuele Pedroni and Noel Rappin
Jython is a version of Python that runs on the Java Virtual Machine. It provides
native access to Java classes and keeps the productivity of Python in a Java
environment. This book covers the basics but also includes things such as us-
ing Jython in a JSP environment, which I found very handy for doing ArcIMS
development. I was able to develop my IMS maps much quicker using Jython
than equivalent straight JSP, and I recommend it if you find yourself in a simi-
lar situation. O’Reilly, 2002, 204 pp., ISBN: 0596002475

Online Resources
Documentation and online articles are probably the best way to stay abreast of updates to Python software, new techniques and methods, and new
libraries that add capabilities to the language.

